
"7A-*IWg 518 A GrRAPHICS(EDITOR FOR STRUCTURED ANALYSIS N1T A DOTA 1.'?
DI1CT IONRRY(U) AIR FORCE INST OF TECH MRIGNT-PATTERSOM
AFB ON SCHOOL OF ENGINEERING S E JOHNSON DEC 87

7 UNCLASSIFIED AFIT/GENEG/7D-29 F/G 12/5 M

11111~~~ 5. __ ,i

mil 11112.

1.25 1.4 1111.8

jjjj1_12 1 - ______

MiCROCOPY RESOLU71ON TEST CHART

N-1 ONAL SU A OF STAORDS - 961

- - 0 S SV W- 7lit SII IIN llc 1 1>

I0 .'DICFILE o,

.~. COF

Ab GRPHC EDTRFO TUCUE

0NLSSWT AADCINR

THSI
Stve E Jhno

Catan USA

AIARGFORCECSNEDITOREFOR STRUCTURED

ANghaLYI s oIT Ai DATAe DICTOARY

L om ACaptain, IJSAF

AFIT/GE/ENG/87D-28

A GRAPHICS EDITOR FOR STRUCTURED

ANALYSIS WITH A DATA DICTIONARY

THESIS

Steven E. Johnson
Captain, UJSAF

AFIT/GE/ENG/87D-28

£Approved for public release; distribution unlimited

I

.m

.. .. ~ - V ,(," 0 r -e ,*".'4' I " " " € ," - ., - " 4- ,-- ," ." • ., ,. -%- ,'

AFIT/GE/ENG/8?7D-28

A GRAPHICS EDITOR FOR STRUCTURED

ANALYSIS WITH A DATA DICTIONARY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the ore

Copy
Requirements for the Degree of WSPEc t

Master of Science in Electrical Engineering

Accession For

NTIS CRAkI
DTIC TAB
Unannounced []
Justifloation

Steven E. Johnson, B.S. Distributy_ n/

Captain, USAF Availability Codes
Ava I. and/or

Dist ISpecial

December 1987

Approved for public release; distribution unlimited

4

Pre face

The purpose of this thesis was to build a tool that

would integrate the use of structured analysis diagrams with

data dictionaries for doing software requirements analysis.

Separate, these two approaches are time consuming and

involve a large duplication of effort. Using the tool, the

duplication of effort is removed, thus improving the

analyst's productivity.

The tool was designed to provide the graphical

capabilities needed to create the diagram in addition to

capabilities to enter the remaining data dictionary

information. Data dictionary information may be transferred

to and from a relational database that stores the entire

project dictionary.

-n preparing this thesis, I extend my gratitude to

several people for their contributions. I thank my advisor,

Dr. Thomas C. Hartrum, for his guidance and support for me

and this thesis. Also, I thank the two other gentlemen on

my committee, Major Phil Amburn and Captain James Howatt,

,7 for their expertise and assistance. Finally, I thank my

dear wife, Sandy, for her understanding and moral support

for me during our AFIT assignment.

Steven E. Johnson

ii

Table of Contents

Page

Preface ii

List of Figures vi

List. of Tables viii

Ahstract ix

I. Introduction 1-1
General Issues 1-1
Background 1-2
Statement of the Problem 1-8
Scope 1-8
Assumptions 1-8
Research Approach 1-9
Equipment and Software 1-1i
Sequence of Presentation i-l

II. Review of the Literature 2-1
Human/Computer Interface 2-1
Interfacing with a Mouse 2-7
Summary 2-9

III. Requirement Analysis for a Structured
Analysis Tool 3-1

Hardware Support 3-1
Software Support 3-2
Existing Requirements from
Previous Studies 3-2
Requirements for the Follow-on Tool . 3-4
Summary 3-6

NI..

iii

IV. Design and Development of the SA Tool 4-1

Hardware Considerations 4-I
Software Considerations 4-2
Previous Study Considerations 4-3
Human/Computer Interface Considerations 4-3

Screen Layout 4-4
Menu System 4-6
Voice Feedback 4-9

Data Structures 4-9
Primary Data Structures 4-10

4Data Dictionary Information Derived
from the Graphics Information 4-14

Data Files 4-16
Coding Approach 4-17
Testing Approach 4-18
Summary 4-19

V. SA Tool Operation and Evaluation 5-1
Operation 5-1

Initialization 5-I
Graphics Functions 5-2
Data Dictionary Functions 5-4
Facing Page Text Functions 5-5
Input/Output Functions 5-5
Miscellaneous Functions 5-6

Evaluation Results 5-7
Evaluation Methodology 5-7
Evaluation Conditions 5-8
Evaluation Results 5-9

Summary 5-12

, VI. Conclusions and Recommendations 6-1

Conclusions 6-1
Recommendations 6-2

Small Scale Projects 6-2
Large Scale Projects 6-3

ix k,

9'#

Appendix A: .\FIT Structured Analysis Syntax . . .-

SADT and IDEF. A-I
AFIT Structured Analysis Diagram Syntax. \-l

Subset of AFIT Syntax Implemented . \-4
Data Dictionary Formats -\-6

Facing Page Text. Format A-I1

Appendix B: Example Outputs B-1

Appendix C: File Format Definitions C-

Appendix D: Configuration Guide D-I

Appendix F: Summary Paper E-1

Appendix F: Requirements Analysis Diagrams F....

Appendix G: Structure Charts G-1

Appendix H: Thesis Software *

Appendix T: User's Manual...................I-i

Appendix J: Reference Manual *

Bibliography BIB-I

Vita VITA-I

• This appendix is contained in Volume II of tho thesis.

This material is maintained by the Department of Eleetrical
Engineering, Air Force Institute of Technology.

-- J

.1

Uff

j aV

I,

I
r~.

p

-V

Wi.

i

Is

. 1-4

2. Components of the User Interface............2-2

3. Design Principles..................2-6

4. RADD Human-Interface Requirements..........3-4

5. SA Tool Screen Layout.................4-4

6. SA Tool Menus....................4-8

7. Example Group of Lines...............4-12

8. Resulting Linked List Structure..........4-13

9. Example Evaluation Format................5-8

10. Evaluation Questions.................5-10

11. SADT Language Features................A-2

12. IDEFO Graphic Syntax..................A-3

13. Graphic Notations Unused by IDEF0 A-3

14. Implemented Graphic Syntax..............A-5

15. Format of a Data Dictionary for Activity . . A-7

16. Data Dictionary for Activity..............A-8

17. Format of a Data Dictionary for Data..........A-9

18. D)ata Dictionary for Data...............A-10

19. Facing Page Text Format..............A-11

20. Correctly Formatted Facing Page Text.........A-12

21. Example ".gph" File.................C-2

22. Session File Outline..................C-5

23. Example Session Header................C-6

51

4.% %

I%

.

:.-79

0%. % 0 00

v .%
Woj~

List of Figures

Figure Page

1. Example SADT 1-4

2. Components of the User Interface 2-2

3. Design Principles 2-6

4. RADD Human-interface Requirements 3-4

5. SA Tool Screen Layout 4-4

6. SA Toot Menus 4-8

7. Example Group of Lines 4-12

8. Resulting Linked List Structure 4-13

9. Example Evaluation Format 5-8

10. Evaluation Questions 5-10

11. SADT Language Features A-2

12. IDEF 0 Graphic Syntax A-3

13. Graphic Notations Unused by IDEF 0 A-3

14. Implemented Graphic Syntax A-5

15. Format of a Data Dictionary for Activity A-7

16. Data Dictionary for Activity A-8

17. Format of a Data Dictionary for Data A-9

18. Data Dictionary for Data A-10

19. Facing Page Text Format A-li

20. Correctly Formatted Facing Page Text A-12

21. Example ".gph" File C-2

22. Session File Outline C-5

23. Example Session Header C-6

\1

A,

'E ..

A GRAPHICS EDITOR FOR

STRUCTURED ANALYSIS WITH
DATA DICTIONARY SUPPORT

I. Introduction

General issues

This research effort was part of the continuing

research in the field of software development conducted at

the Air Force Institute of Technology (AFIT) by the

Department of Electrical and Computer Engineering. In

conjunction with this research, the department has

established documentation standards to support the

requirements analysis phase of the software life cycle. The

documentation includes structured analysis diagrams and

data dictionaries. The structured analysis diagrams use a

syntax derived from Structured Analysis and Design Technique

(SADT) (SADT is a trademark of SofTech, Inc.)

5 Two past theses led to the concept of integrating the

structured analysis and data dictionary documentation

standards. In 1984, an AFIT thesis by Charles W. Thomas

suggested data dictionary information could be obtained from

graphic pictures (Thomas, 1984:11). In 1986, an AFIT thesis

by Jeffrey W. Foley developed a data dictionary editor for

the Zenith Z-100 computer (Foley, 1986:3). This editor is

capable of creating and editing data dictionary information

I.'

* ': and putting the information into a database whicoh is stored

on a central computer system.

This project is a direct follow on to the 1986 thesis

by James W. Urscheler. lie created an initial version of a

tool (nicknamed RADD for Requirements Analysis tool with

Data Dictionary) that allows a user to interactively create

and edit structured analysis diagrams while extracting data

dictionary information from the diagrams (Urscheler,

1986:3). By integrating these techniques into one tool, the

software analyst's work is reduced when creating data

dictionaries and structured analysis diagrams.

In conjunction with this effort, another thesis was

conducted to design a central database that will standardize

the data formats for software engineering tools (Connally,

1987). Thus, a criterion for this thesis was to develop a

data format capable of interfacing to this central database

as well as storing complete data dictionary information and

structured analysis graphics information.

Background

r SADT. SADT is the name of SofTech's methodology for

doing requirement analysis and system design. It was

first published in 1977 by Douglas T. Ross of SofTech (Ross,

1977). The methodology was found effective when applied to

"a wide range of planning, analysis, and design problems

I O -2 Owl

I

involving men, machines, software, hardware, database,

communications procedures and finances ... " (Ross, 1977:17).

SADT provides techniques and methods for:

1. thinking in a structured way about large and
complex problems;

2. communicating analysis and design results in
clear, precise notation;

3. controlling accuracy, completeness, and
quality by procedures for review and approval;

4. documenting the system analysis and design
history, decisions, and current results;

5. working as a team with effective division and
coordination of effort; and

6. managing development projects and assessing
progress (Softech Inc., 1977:1-1).

An SADT model consists of diagrams drawn according to

ra well defined graphical syntax. Each diagram has

accompanying text to assist in the understanding of the

diagram. The diagrams represent a hierarchical outline of

the system. According to Softech

Each lower-level diagram shows a limited amount of
detail about a well-bounded subject. Further, each
diagram connects exactly into the model to
represent the whole system, thus preserving the
logical relationship of each component, to the total

Fr system (Softech Inc., 1976:2-6).

Figure I is an example of an AFIT SADT type diagram. SADT

* models all systems in terms of the system happenings, or

act iv it, i es, and the system objectts, o r data (Sof'tech Inc.

1976:2-5). Softech SADT methodology cal 1s for the

'.

I.%

02

AUTHOR: j, TET jlIq/g6 IREAIDER I
PROJECT: ECS Gp~I IREV: i.0 JDATE

CZ Sf-r-

NwGet

17 user Fdo ,eae

NOOC: TITLE:NUBR
AIZ Gel I ts

Figure 1. Example SADT Diagram

1-4

I-%

decomposing of both the activities and the data

independently of each other (Ross, 1977:19).

The language used to construct. both types of SADT

diagrams consists of 40 graphical type features and

principles. The language has two components: English text

and graphical constructs. Combining the two components

provides the function needed to provide communication (Ross,

1977:19).

The graphical language is designed to

1. expose detail gradually and in a controlled
manner;

2. encourage conciseness and accuracy;

3. focus attention on module interfaces; and

4. provide a powerful analysis and design
vocabulary (Softech Inc., 1976:2-6).

Rectangular boxes and arrows are the primary graphical

constructs used in making an SADT diagram. The boxes

rppresent the decompositions of the parts of the system.

Arrows are used to describe how the boxes interface between

each other on the diagram. English text is used to Label

the boxes and the arrows and define their meaning (Softech

Tne., 1976:4-4). According to the Softech definition

Input. data (on the left of the box) are transformed
into output data (on the right) by the activity
represented by the box. Controls (on the top)
govern the way the transformation is done (Softech
Inc., 1976:4-5).

Arrows do not represent a flow of control, rather, they

describe classes of data. One arrow can represent. several

iI -5

-. . - -* i

classes of data; this is referred to as a pipeline. The

label for the arrow must precisely describe the contents of

the pipeline (Softech Inc., 1976:4-7).

Applying the SADT methodology allows teams to

effectively work together. As part of the process, the

authors distribute drafts of the SADT diagrams and

supporting documentation to interested parties. This

process, called a peer review, permits the parties to review

the drafts and make written comments to the authors. The

author then responds to these comments. This process

continues until all agree that the model is complete.

The reader is referred to the 1977 article by Douglas T.

Ross for a more definitive description of the SADT concept

(Ross, 1977).

IDEF0 . The U. S. Air Force Program for Integrated

Computer Aided Manufacturing (ICAM) adopted a structured

graphic technique called IDEF 0 (ICAM Definition Method

zero). IDEF0 is a derivative of SADT, tailored by Softech,

Inc. for ICAM. It is the function modeling technique

applied to all ICAM projects (Smith, 1981:1). IDEF0 was

developed to give a structured approach to applying computer

technology to manufacturing and to enhance the communication%

and analysis of the people involved in improving

manufacturing productivity. A detailed comparison of the

SADT and IDEF 0 syntaxes is found in Appendix A.

K,

DataDictionaries. The purpose of a data dictionary

is to manage and document a valuable resource, data. Using

a data dictionary system properly provides measurable

benefits to an organization (Lefkovits, 1977). Ten areas

that benefit from an effective data dictionary system are

listed below.

1. Reduction of data redundancy
2. Reduction of system development costs
3. Enhancement of the system maintainability
4. Improved impact of change assessments
5. Enforcement of data standards
6. Improved information for data base creation
7. Improved Communication between people
8. Better auditing of use of data
9. Reduction of Administrative Effort

10. Creation of trustworthy information (Lefkovits,
1977:1-8 thru t-11)

The AFIT methodology for including data dictionaries

with the requirements analysis is supported by Leong-Hong and

Plagman. They said,

The use of the DD/DS (data dictionary/directory
system) in requirements definition and analysis is
critical. The DD/DS provides a framework in which
the end-user and the analyst, can communicate with

each other using common terminology and
definitions. Communication between the end-user
and the analysts, between the analyst and the
designer, and between the designer and the
developer is essential in building a system. By
maintaining consistency in the data used,
potentially disastrous conditions caused by
inexact or inconsistent data can be averted
(1Leong-llong and Plagman, 1982:34)..

Leong-llong and Plagman identified yet another benefit.

that the data dictionary gives the requirements analyst, that.

of maintaining documentation. The data dictionary maintains

descriptions of the activities and data needed for each

-7
% % '

n- - W.- R-

activity. From these descriptions, documentation regarding

the effect of activities upon each other is readily available

(Leong-Ilong and Plagman, 1982:41-43). The authors further

recommend an automated data dictionary system for producing

documentation to reduce the monotony and repetitiveness of

the task (Leong-long and Plagman, 1982:50).

Statement of the Problem

The purpose of this thesis was to integrate the

structured analysis and data dictionary techniques into a

CAD too] to attempt to make the software requirements

analyst's job more efficient.

Scope

To make RADD useful, the requirements and design of the

RADD prototype were analyzed to ascertain the changes and

additions needed. The software to effect the changes was

designed, coded, and tested, and the usefulness of the new

version of RADD was established by a formal evaluation using

questionnaires and statistical analysis of the responses.

Assumpt i ons

For the purposes of this thesis, the researcher made

four assumptions. These assumptions are listed below.

'.

!%

ON1-8

"W ".

1. The users of this tool are AFIT graduate
students and faculty.

2. The users of this tool are competent in the
use of computers.

3. The users of this tool are familiar with the
structured analysis methodology and uses of
data dictionaries.

4. The requirements analysis methodology used is
described in AFIT's Software Development.
Documentation Guidel ines and Standards
(Hartrum, 1986:8).

Research Approach

This research was accomplished in three phases. In the

first. phase, the current requirements analysis for RADD was

reviewed, followed by a review of the design and

implementation of RADD. These were updated and changed as

necessary to reflect the new requirements and design of the

new tool. Next, the reusable parts of the RADD software

were extracted and new code written to implement the changes

deemed necessary by the analyses. Finally, an evaluation of

the new tool's usefulness to a software analyst was

accomplished.

Part of the first phase was to review the requirements

analysis for RADD. This was necessary because the initial

version of RADD needed improvements to become useful;

therefore, requirements for the initial version of RAI)D were

not complete. The requirements analysis for RADD was

described textual ly in Chapter Three and graphically hy

5t.rujctured analysis diagrams in the Appendix (if the %

W~"s%'

Urscheler thesis. In performing this analysis, it. was

necessary to analyze other structured analysis methodologies

to define a suitable language for the AFIT environment.

From this language, a minimum subset for the new structured

,p analysis tool was identif ed.

Also during the first phase, the design and

implementation of RADD was analyzed. This was necessary

because RADD was not completely useful. For instance, in

addition to expanding the language implemented by RADD, it

was necessary to permit. printing hard copies of the

structured analysis diagrams. Furthermore, design issues

such as extensibility and maintainability were considered.

The design of the database was examined with regards to the

central database management system being designed for the

k' AFIT distributed design environment. After completing these

analyses and identifying the necessary enhancements, the

second phase began.

The second phase was the development of the software.

Using a top-down approach, the modules were coded and tested,
integrating the system in the process. All software

,conformed to the standards set. forth in AFIT's Software

Development Documentation Guidel ines and Standards pamphlot

(llart.rum, 1986)

The third phase was a formal evaluation of the

st ructured analysis tool 's usefulness t.o a software syst 'ms

analyst. A likely pool of analysts, familiar with

:'
1-1 ()

I-

structured analysis and data dictionaries, was drawn from

the students and faculty of AFI's software engineering

('lasses. These people were polled using standard

questionnaires (Foley, 1986). The results of these

questionnaires were compiled and analyzed with statist.i(al

methods, establishing the tool's usefulness to the AFIT

s ftware systems analyst..

E1quipment and Software

The equipment and software for this thesis were

available in the Information Systems Laboratory of the AFIT

Department of Electrical and Computer Engineering. The

computer used for this thesis is the Sun 3 (Sun is a

trademark of Sun Microsystems Inc.) workstation. This

workstation runs Berkeley UNIX (UNIX is a trademark of AT&T)

version 4.2 and features Suncore graphics and the Sunwindow

environment.. The software developed in this thesis was

written in C.

Sequence of Presentation

This thesis consists of six chapters. A literature

review of human/computer interface issues is presented in

Chapt er II The requirements for the new tool are presented

in Chapter I1. The system design is presented in Chapter

IV. Chapter V is a summary of the implement.at i on arid is a

stat ist iial analysis of user ract ion to the tool. Chapter

VT presents t he researcher',s conclusions and re(commendat, ions.

%

II

Iw

II. Review of the LiteratureA
Introduction

The purpose of this thesis effort was to build an

interactive CAD tool. It was imperative that the researcher

understand the issues that impact interactions between the

computer and the user. Since the human/computer interface

issues were deemed critical to the success of this effort, a

review of the literature was conducted to gain the knowledge

needed to design the human/computer interface for this tool.

lluman/Computer Interface

A computer system's effectiveness is directly related

to how well the user and the computer are able to

communicate with each other. Newman and Sproull noted it is

the design of this user interface that "... has a

particularly strong impact on the program acceptability as a

whole" (Newman and Sproull, 1979:443). The importance of

the human/computer interface was further amplified by Robert

W. Bailey. lie said:

Not considering human performance in the
human/computer interface frequently results in
large numbers of errors, requires huge amounts
of training time, and causes user frustration
and dissatisfaction (Bailey, 1982:293).

Because each user has a di fferent background and

experience, the process of designing the user interface is

difficult. This is further complicated because a

-.- .- -

universally accepted method for designing a human/computer

interface does not exist (Woffinden, 1984:15-16). As Foley

and Van Dam noted

Like architecture, the design of user interfaces
is at least partly an art rather than a science.
We hope that the design of user interfaces will
someday become more science than art, but the
climb to reach this goal is long; the ascent has
begun, but there are many hard traverses ahead
(Foley and Van Dan, 1982:217).

User Interface Components. Newman and Sproull (Newman

and Sproull, 1979:445) divided the user interface into four

components. Figure 2 enumerates these components. Since

the names of the components do not imply their full meaning,

a short discussion of each follows.

t1. User's Model

2. Command Language

3. Feedback

4. Information Display

Figure 2. Components of the User Interface

The user's model is "the conceptual model formed by the

user of the information he manipulates and of the processes

he applies to this information" (Newman and Sproull,

1979:445). In other words, it is the way the user thinks

and understands the program to work; therefore, he is able

to devise his own strategies for operating the program.
i2

, 2-2

"1

b

Thus a good user model is characterized by the user

understanding the purpose of each input he gives the

computer rather than blindly following the user's manual

instructions. The user's model should present objects or

phrases that are familiar to the user and simulate the

modeled environment. "The use of familiar concepts makes

the user's model more intuitive and easier to learn" (Newman

and Sproull, 1979:448).

Next., the user needs to know the command language to

use the model. Designing a command language involves

recognizing that all commands relate to each other and

together they define a syntax for the language. In addition

to syntax, the semantic value of each command must be

considered.

Newman and Sproull reported there are four issues that

further complicate the design of a command language. These

are

1. Command modes. Allowing the same user input
to be interpreted in different ways depending
on the current mode.

2. Selection sequence. Usually an operation must
be selected in addition to selecting an object
to operate on. Which comes first has an
effect on the number of command modes.

3. Command abort mechanism. Commands requiring a
sequence of inputs must allow for retraction
of the command in the middle of the sequence.

1. Error handling. It must be decided how to
handle erroneous or meaningless commands
(Newman and Sproull, 1979:451-452).

id

.' 2-2

d./, ,... ".. .. . -.. -."...... -.- ¢,'.,,._' ,'... ,-' -' '- ' -- " '." ' -"'

Another dimension to the user interface design

('(mplexity is the number of possible input devices

available. The designer must be consistent by making the

user operate the same input device for each command.

Feedback is required to let the user know what is going

on in the program, and should be given quickly. According

to Newman and Sproull, three important forms of feedback are

*- 1. Feedback by informing the user if a command
has been accepted, or if an error has
occurred.

2. Feedback that the correct object has been
selected.

3. Feedback such as cursor feedback, character
echoing, and so forth (Newman and Sproull,
1979:464).

information display is the final component of the user

interface. The flexibility given designers by graphical

devices poses a problem in determining an effective means to

display the information. These problems have fallen into

two categories: overall layout and representation of

objects. Screen space is usually at a premium and what is

pertinent for display at a given time must always be

evaluated. On the other hand, if user controlled windows

compose the display, the burden of arranging the display can

be shifted to the user (Newman and Sproull, 1979:460).

Newman and Sproull further suggested that the quality

of the graphic display forces the designer to make trade-

offs. The designer must decide between the amount of screen

ba

"i, 2-i

4 -1,

IF"AA A b-N

space taken and the amount, of detail necessary for a given

image (Newman and Sproull, 1979:462).

After studying the components of the human/computer

interface, various general user interface design principles

were researched.

Desigp Principles. As previously stated, a universally

acceptable method for designing a human/computer interface

does not exist; however, experience has led to the

documentation of certain design principles. Figure 3 is a

list of principles by four different authors for designers

of interactive programs. It should be noted the principles

encompass all four components of the user interface. Also,

the list given by D. S. Woffinden was derived from works

including those of the other three authors on the list.

3Woffinden found these guidelines incomplete, lie said:

None of the lists of general design guidelines

studied were found to be completely satisfactory.
Many seem to have become over concerned with the

human issue and seem to fall short of giving
guidance revelant [sic] to the complete design

process for an interactive system (Woffinden,

1984:19).

Figure 3 shows that each author views human/computer

design from a slightly different perspective. Nonetheless,

Foley and Van Dam asserted it is important for the designer

to consider these design principles if a satisfactory

interface is to result (Foley and Van Dam, 1982:218).

'.

*........................... *..%.

Ld >
.0 c rC -

IC c2 020 10 -
c 02 E lic co CQ)

L...C~~~ W~-- C O > *

C -- a; Cc L.

o C C w. M r.(cQ

a) - 0

N CC> o6 oC bC E -2; c0 c tL
W ~C "C 0 C) 00 a oaUL ;2 -

N 0 4-1 t -o c Q
c2 *c-r z < a tc ;P.

=~~~~ S-EE~-
C- ccO C ~ - ~ 5 0 -

cO. a~C -- -. '-

z UC. 0 a *.0 020 a;0 cIC..I

L. C- al

LON

C .g S CC 9;

.. - 6 0

Interfacingwith a Mouse

L Increasing the number of different input devices

increases the design complexity. Since, in this project,

the mouse and the keyboard were used for input, it was

important to consider the issues surrounding human/computer

interfacing with a mouse.

Lynne A. Price considered it practical to use a mouse

in CAD programs because of the following six advantages:

1. Mice allow control of the cursor through arm
motion natural to pointing.

2. A mouse gives the user the ability to point
and to invoke several functions with one hand.

3. The mouse allows cursor position to be
controlled by software somewhat independently
of the user's hand motion.

4. The mouse permits the user to remove his hand
from the pointing device (e.g., to use the
keyboard or answer the telephone) with no
change in the cursor position on the screen.

5. The pads required by optical mice are light,
are easily moved, and may be placed on top of
normal desktop clutter.

6. Mice are convenient for both left and right
handed users (Price, 1984:288).

Price conducted four experiments to test the

suitability of the mouse as a pointing device for CAD

systems. The experiments involved pointing the cursor with

the mouse at graphic items and clicking the buttons. A

" mechanical, three button mouse was used for the first three

experiments (Price, 1984:288-293). I

-,-"2-7]

!.- . .1

.. n• nf flr www wrw www wf rw WW-WWW l f .. r..r -n *r Fr . - .; - .L z: . rrr - - : "

B

The first experiment tested forty-two individuals'

abilities to use the buttons and control the cursor

position. Errors occurred more frequently when the number

of buttons involved increased and when the mouse was moved
4.

while buttons were held down (Price, 1984:289).

The second experiment attempted to determine if

different numbers of clicks of a single button or use of a

different button to indicate the same input decreased

accuracy and caused more errors. No significant difference

was observed in the time to complete comparable experiments

or in the accuracy between the two methods (Price,

1984:290).

The third experiment attempted to determine if the

decrease in performance noted in the previous experiment was a

function of the time allowed the user to begin the second

click. In experiment two, the people were required to enter

*." the second click within a half to three-quarters second of

the first click. In this experiment, this delay was varied

up to one half, three-quarters, and one full second. Price

found as the delay time was increased, the difference in

performance became less significant (Price, 1984:291).

In the final experiment, a different style of mouse was

tested, one with two horizontal rocker buttons providing

four distinct inputs. No significant difference in

performance or accuracy was identified for any for the

Fvariations tested; however, a large majority preferred the

.2

2-8

" .

variation that. most closely simulated the previous style mouse.

Price concluded that people prefer using one finger for each

3 different input and that a mouse with vertically configured

buttons is preferred (Price, 1984:292).

Overall, Price concluded the differences in performance

and accuracy identified in the four experiments were small

enough to justify using more complicated input techniques

when the number of different. inputs exceeded the number of'

available buttons. She also noted these more complicated

techniques would cause a large software overhead for the

designer by requiring a check for multiple button clicks and

by requiring a check for user input errors (Price,

1984:293).

Summary

The purpose of this literature review was to assimilate

the latest information that pertained to the interface

between a computer and its user. Information was gathered

to review the components of the interface and the design

principles one should consider when constructing a

human/computer interface. Also, because the tool

constructed by this thesis effort used a mouse as an input

source, information on experiments to test a mouse's

suitability for the tool was studied. After gaining an

understanding of these critical subjects, the researcher

based requirement and design decisions on the foundations A

learned here.

7442

... ~ . - .'A ,A

4" 4 ld ' " ". " .- " . . ° . " " - r " .- . - .- . . , . - - - . .- ,- . . . r - - . .- . " " 4" .A". ' "

Qw

I1I. REQUIREMENT ANALYSIS FOR A

STRUCTURED ANALYSIS TOOL

The issues constraining the requirements for this tool

are sorted into three broad categories. The cat egories are

available hardware support,, available software support, and

existing requirements based on previous studies. After

considering these constraints, the requirements specific to

K" the CAD tool are identified.

Hardware Support

Because this tool is to be integrated into the AFIT

' (,imputing environment, it is necessary to consider the

restrictions the environment poses on the tool. Currently,

the computing environment consists of several mainframe

computers and many stand-alone workstations. The primary

mainframes are two VAX 11/785 computers (VAX is a trademark

of Digital Equipment Corporation Inc.) running the Berkeley

4.3 UNIX operating system.

Access to the mainframes is avai lable through the use

K[of the AFITNET. This provides the capability to connect to

the computers with a home computer over the telephone lines

(AFIT/SI, 1987). Also, there are Zenith Z-100 and Z-248

workstations that are able to access the A' ITNET. l'h e

AFITNET gives other mainframes and the SUN (SUN is a

IF

"p

I

trademark of SUN Microsystems) workstations the capability

to remotely Login to the 11/785's via an Ethernet cable.

Software Support

As discussed further in the next section, a requirement

already existed that the data produced by the tool be stored

in a reLational database using the INGRES database

management system on a UNIX host computer. The capability

to store the data produced by the tool was devetoped in

conjunction with this thesis effort. Thus, there was a

requirement that the software create data files usable by

the relational database manager.

The software used to create the tool was also required

to interface to a graphics package. In the interests of

portability, the use of a standard graphics package needed

.- consideration. Also, the software needed to be portable to

other systems.

Existing Requirements from Previous Studies

Data Dictionary Editor. This computer tool permits

users to create and edit. data dictionary definitions for the

requirements, design, and coding phases of the software

J]'e('ycle. After editing the definitions on a personal

computer type workstation, users may transfer the

!! definitions to the database host via the AFITNET using

available communications software. A current thesis

.C..

m

effort will make it. possible t.o store the definitions in the

cent raI database.

The data dictionary defini t.ions created hy th,, f, i.t r.

.- and the tool from this thesis are re lated. (1 rs,,' hel, r•

designed the protot ype in this manner. If,' -aI i

To insure there is a Ilevel If c()risi, -;t ench' (
same defini t ions wer, ,mp ,)ye(i n IUAI)I). I f:f
'onsist ,ncy re.sulteId r a A i rect I inl t , er t h

7- 100 ,d it t0" 1nd lRADI) at t hi, (t;t d).io I(ev,

,'r-v-h,' I e.r 1 : :19)

Thi- t he, remtnt t () m, i nt ;t ri cons istency at. t.he database

! .,,I s' i ,I I e isted for' this t.hesis effort.

HUumar/(',npuIt r Interface Requirements. As discussed in

'hapt.er" Two, an adequate human/computer interface is

•rit ical to the success of interactive computer tools. This

thesis effort as well as the Urscheler effort were bound by

t.his requirement.. Figure 4 is a list of the five key

psychological factors Urscheler considered in attempting to

fulfill the human/computer interface for his effort.

Analysis of the RADD human/computer interface by this

researcher found the interface a good one. Overall, the

user feels a real sense of drawing an SA (Structured

Analysis) diagram when using RADD. However, enhancements in

areas specified by the requirements in Figure 4 are needed

to improve the existing human/computer interface. The

requirements presented by Urscheler and those established in

Chapter Two were considered in the design of the follow-on

tool.

3 _3

6.'<

I . Kep the user motivated -- do not frustrate or

R bhore him.

2. Break the lengthy input process into parts to
permit. the user to achieve "psychological

closure". This provides positive feedback to
the user through a feel ing of accomplishment
andl~ Success.

3. Minimize the memorization required by the

user.

4. Provide visually pleasing displays on the

screen. This includes minimizing the

scrolling and other distracting movements of

text, the highlighting of instructions to the %

user, and making effective use of margins and

white space.

5. Keep response time to a minimum. Display

status messages to keep the user constantly
informed of what is happening inside the

machine.

Figure 4. RADD Human-Interface Requirements
Source: (Urscheler, 1986:21)

Requirements for the Follow-on Tool

In defining the requirements for the follow-on tool, it

was necessary to analyze the current implementation and

determine how well it conformed to the original

requirements. Areas of specific interest were the

human/computer interface, the tool's functionality, and the

reusability of the software. Also, it was necessary to

evaluate the SADT methodology to determine the requirements

for a necessary and sufficient SA language suitable for the

AFIT software development environment..

1-

Woo ,, = w, e , W ~ .',' ,- G ' ' ' "" J " " " " " " " -=, ',- L.,".'V, = "" " "" " '' * J ' " "",. V ' " "- """" " ", ' "" ". ' " -".""_'""". '" " '"""_.

De t.erm i ni .ng how we I I RAIl) ,omplied wi t.h it~s

rkquirement.- was d i fii ciut. H' ing a prototype and given the

t ei o cnstraint in which it. was developed, the requirement-s

"* ~aalysis did not. measure up to those specit*i ed in t. he

Software Development. Doe iument.at.ion Guidelines fnd S t.andards.

The given requ remen t.s analysis was not decomposed to the

leveel (of det:ail ne-essary t.o specify all the activities and

dat a

" RADD implemented a small subset, of the total SAI)T

la aguage needed t.o sat. isfy the AFIT software requirements

m,thodo logy; t herefore, a requirement existed t.o define an

cxact language syntax for the t.ool. If possible, it. was

,desirable t.o develop a st.andard consistent with exist. ing

standards adopted by the Air Foree. A study was conducted

to let.ermine it' such a standard existed and to define the

. syntax. Appendix A discusses the results of t.he study.

In addition to the SAI)T diagram, requirements existed

to produce fac ing page text. for the diagram and data

* diet ionaries for ea(h act.ivity and data element.. Format

guidel ines for these products are given in Software

DeeI velopment 1)o(cumen t.at, ion Guide lines and Standards.

Append ix A a lso presents exact. format.s for each of these

..
product s.

S..
a3

% -

Sulmmary

l'This .hapter" desc ri bed t.he requirements for a graphi 'al

st ruct ured analysi s CA) tool . rhe- requirements based on

(onstraints from hardware support, software support., and

-. previous studies were discussed. Also, human/c'omputer

intert'ace requirements were identi fied and di.scuissed. The

A nex\ t ('hap t e r present s the design decisions based on these

rt,]i i rfmen t~s.

-4.

.'

%,

4--!

es "

" -
IV. DESIGN AND DEVELOPMENT OG TIE SA TOOL,

S In the previous chapter, specific requirements for this

tool were discussed as well as issues constraining the

requirements. The purpose of this chapter is to present the

design decisions made based on those requirements and on the

object. ives of the thesis. This chapter discusses the design

considerations taken into account during the design process,

the considerations in defining the internal data structures

used, the definition of the file structures used, and the

approach taken to the coding and testing of the tool.

lardware Considerations

The SUN workstations were chosen because they met

several hardware requirements. First, the SUN workstations

- are linked to the AFITNET. This integration with the AFIT

computing environment was important because data dictionary

information from the tool is stored in a database that may

be maintained on another machine.

The SUN workstation's main memory is adequate for

executing the tool's program. Because the executable file

is in excess of" I Mbyte, smaller workstations like the Z-1O0

-* could not. be used.

The SUN workstations have a large display monitor that.

. ;ccommodated the intended screen layout.. The intended

"i sc reen layout consisted of five (listin ct areas, one being

r.-N

the drawing area that. had to be large enough to clearly show

all the graphical constructs of the SA syntax.

The SUN workstations provide a mouse in addition to

the keyboard as an input device. The mouse is the primary

input tool for selecting and manipulating the graphical

const.ructs on the SA diagram because of its ability to

function as both a locator and a pick device.

Finally, the SUN workstations are sufficient in number

and meet the availability requirement. Currently, there are

six SUN workstations available and all are linked to the

AF ITNET.

Software Con'-iderations

Portability was considered when selecting a software

graphics package. The prototype developed by Urscheler

utilized the SunWindows environment (SunWindows is a

trademark of Sun Microsystems Inc.). At the time the tool

implementation began, an implementation of the GKS graphics

standards called SunGKS was available only in a beta version

*. with the release date of the final version unknown. Also at

implementation time, SUN had released a new version of

SunWindows, called SunView. Given these circumstances and

that portions of Urscheler's software could be used, it. was

docided to proceed using SunView, attempting to isolate each

Sunview function call within its own module as much as

poss-ble. Also, using an available graphics package ensured

the su, cssfjl implementation of a complete tool.

1-2

%- "'
%i

This decision limited the language used to C. This

choice did not, however, detract any more from the

Sportability aspect of the tool.

Previous Study Considerations

Since data dictionary information may be entered into

the data dictionary database from sources other than this

tool (currently the Data Dictionary Editor is the only other

tool with this capability), there were existing constraints-7
on the field lengths for the data dictionary entries. To

meet this requirement, the field lengths specified in the

Data Dictionary Editor were used in this tool.

From Urscheler's thesis effort, two design decisions

were carried over. First, the window size was kept the same

because it closely represents an eight by eleven inch page

size. Second, the size of the activity boxes was kept

constant. Urscheler's testing found that user-determined

box sizes led to increased software and data structure

complexity (UrscheLer, 1986,27).

Human/Computer Interface Considerations

The importance of an acceptable human/computer

interface was discussed in Chapter Two and Chapter Three.

To attain this objective, the design decisions surrounding

the screen layout, the menus, and the use of voice for

feedback are presented in the following paragraphs.

I%

.

Screen Layout. Figure 5 is a picture of the actual

screen layout used by the tool. It was decided to divide

the screen into five distinct areas or windows: the Input

-Window, the Message Window, the Selection Window, the

Diagram Window, and the Data Dictionary Window. Each of

* 1, lJ: DISABLL

MESSAGE: WELCOE. Pleass mks a 10 l ton.

VUTHOR: JDATE: IREADER I

'PROJECT: IREV JDATE I
U-

NODE. TITLE: ht9ER:

Figure 5. SA Tool Screen Layout

III
-4-4

d%

these windows, except. the Data D)ictionary Window, serves a

unique purpose; the Data Dictionary Window serves two

S purposes. The following briefly discussed the role of each

window.

Diagram text is typed from the keyboard and is echoed

in the Input. Window, which is located at the top of the

screen layout. For each input, a maximum length is defined.

Attempts to add to the input beyond this limit are not

allowed. Also, errors are correctable by using the "DELETE"

key to backspace over errors. After typing the input,

striking the "RETURN" key puts the text on the diagram.

The Message Window, located directly beneath the

-" Input. Window, is integral to the user interface because it

is the primary means by which the tool keeps the user

abreast, of" the tool's status. Here the user receives

instructions on how to proceed with a given operation,

feedback on the results of a particular action, and help

messages on how to resolve a problem that occurred. The

words "Make another selection" are used to indicate that the

current operation is completed and the program is ready to

process another menu selection. The menu system is

(discussed in more detail in the next. section of this

chapter.

The Selection Window, located directly below the

Message Window, is where the user selects the menu that

contains tlhe next. desired operation. Five ovals are laid

4- 5

0

% ° . ' .° . .- ' - -. - ' o % '- , % o .- -°' .---.. -. -°- " . -.. --. . . °" - , '* '. ,. - - '

, W r .. - . --

out in the left-to-right order in which it is anticipated

the user would pick the menus. For example, it is

anticipated the user would first edit the diagram by adding

and deleting lines, boxes and labels. Next, the user would

enter the applicable data dictionary information before

-[V. getting hardcopy outputs of the data dictionaries, the

f[acing page text., and the diagram. Finally, the user would

save the diagram for possible future editing.

The Diagram Window is located underneath the Selection
I..

Window and is where the SA diagram is actually "drawn." In

the Diagram Window the user is able to create, delete, and

move activity boxes, lines, footnotes, and squiggle lines.

All of the menu selections for manipulating these and other

" graphical entities are accessed by selecting the "EDIT

DIAGRAM" oval in the Selection Window.
~4

Finally, the Data Dictionary Window is a dual-purpose

window located below the Diagram Window where data

dictionary information that cannot be derived from the

graphical inputs is entered. The user enters the needed

information from both the keyboard and the mouse. Using the

mouse, the user quickly moves the cursor to the particular

field in which he desires to enter the text. The Data

Dictionary Window also displays the current facing page

text.

Menu System. Considering the nature of the tasks to be

* accomplished, a menu driven system was chosen because it

4 -6

...................... , -*-.. .. ' M ' .~... .V f' ..

satisfied several of the rules for a good user interface.

Specifically, a menu driven system offered the following

advantages:

1. It automatically partitioned the input process
each time t.he user selects another operation.

2. It minimized the memorization required by the
user.

3. It gave the user a feeling of control over

the tool by selecting the next operation.

4. It reduced the number of opportunities for the

user to make an error by having to type the
select ion.

5. It permitted a uniform selection process.

The user chooses a menu of operations from among the

Selection Window ovals. Each oval, except the "RFCALL

3DIAGRAM" selection, puts a menu of operations on the screen

from which the user selects.

In addition to the left-to-right ordering of the ovals,

each menu was designed in a hierarchical manner that matched

the functional decomposition of the tool. Figure 6 shows

all the menu selections used by the tool and their

decompositions. The pictures are the actual screen images

seen by a user of the tool, with the arrows on the right, of

the menu meaning there are more selections to be chosen.

For a detailed explanation of each of the menu functions,

the reader is referred to the User's Reference Manual,

Appendix I of this document.

1-7

,: , [RECALL DIAMMT)

MOVE Line LabelV - Edit TO/FROM Labul

Edt ICON Label

Rodraw/Dolote Line

Choate ACtivity "sm br
Chooe Activity box Location

Delete Activity box

Edit Project

Edit Date

_ _ _ _ _Edit Revision

EDIT Line Edit Title

EDIT Activity Oe - Edit Number

EDIT Neder Info . I _
DELETE Footnote

-_ _ DELETE Squiggle A e ct

ADD Activity ox Add Date

ADD Heder Info , Add 0i Sion
ADD Line Ad Node

ADD/CHANGE FootnoteAI- D -S g NT"*ADD Squiggle- I Add Number

L [Add ALL
boundary

Arrow

I Tunnel Arrow
To ALL

,. ., ot-A
I--- I-t-t

~Arrouhoea
ADD DO oindary Arrow Twrn-A
ADD MORE ALIASES Tunnel Arrow Turn-L

_______ ___EDIT DD frm ALL branch-L

SAVE DO IN FILE DOt-T/A Or&nch-R

DO-FINISHED Dot.I/L Join-I

Arrouhe*d Join-L
,"DONE DONE

Chge Footnotedu~er

_DChange Footnote Locat'on

Uhr7"DISPLAY FPT
[:: FuN~iON]SVE FPT IN FILE

Make Diegram (Normal)

Make Diagrm (Sideways)

Change Directory

"__ _ Display Directory
[MS FUNCN } START Now Diagram

Redisplay Diagram

QUIT (NO SAVE)

,:v: for DIN

_SAE DIM~Save Loca1

Figure 6. SA Tool Menus

.

4-8

- +, . - - , -. ,. . .- -. +,'ll ,'-. ' * .

Making a selection from any of the menus is a uniform

pr)ess. With the mouse, the user places the cursor over

the text. of the desired menu selection. When the selection

is changed to reverse-video, the selection can be made by

clicking the left. button on the mouse.

Voice Feedback. This tool was designed to accommodate

a DECTALK (DECTALK is a trademark of Digital Equipment

Corp.) voice synthesizer running version 2.0. The objective

of this decision is to enhance the human/computer interface

by attempting to permit the user to concentrate his

attention more on the Diagram Window than the Message

Window. To activate this option, SAtool must. be executed

,*. with a -v option to initialize the DECTALK. A software

module called "put message" directs messages to either the

DECTALK, the Message Window, or both. Due to the time

constraints, this capability was installed in the tool, but

not developed or evaluated.

These paragraphs discussed the screen layout, menu

setup, and voice feedback issues in the design of the tool.

In the next section, the data structure design issues are

* discussed.

Data Structures

The internal data structures developed for this project

were entirely different from those developed in the

Urscheler prototype (Urscheler, 1986:A-I). Urscheler's data

structures were designed only for the small subset. of the SA

V.

' syntax used by his tool; therefore, new data structures were

needed to implement, graphical entities like footnotes and

squiggle lines. In addition, this researcher's analysis of

the prototype concluded that the low-level approach of

treating all lines (whether they made up an activity box or

lines connecting the boxes) and all text (whether it labels

the diagram, a box, or a line) as the same entity resulted

in increased software complexity. Based on this analysis, a

higher level, object oriented, approach was taken.

This section is divided into two parts. First, the

primary data structures and the information they st.()re are

desc ribedi. Second, the data dictionary informat ion derived

from the diagram is discussed.

Primary Data Structures. The design ,f the data

structures was driven largely by the requirement. for the

tool to produce one separate file of datoa dit.ionary

information that. is capable of being stored in a relational

dat.abase. This requirement led to the following design

objectives:

1. The data structures must. maintain both
graphics and data diet ionary information.

2. The data structures must separate the data
dictionary information from the graphics

, oinformation as much as possible.

3. The data st ru(ctures must maintain enough
'informat ion to al low the graphics and (ata

dictionary inf'ormation to be stored in
separate f i I es and later restored from those

:. f'iles.

I

f I () -

1

From these object ives, five primary data structures

were designed to hold all the graphics and data dic tionary

* informat ion. The fol lowing paragraphs descri be each of

these structures and how the data dicti ionary information

relates t.o the structure.

TIP The box structure contains the information needed to

Iocate and I alel activity boxes as well as store dat.a

dictionary information not, derived from the diagram. In

addition, each box structure is classified as such by a

numeric structure type field. All the activity boxes on the

diagram are maintained by using a linked list; therefore, a

C pointer to the next box structure was also defined.

The box structure uses another C pointer to point to an

activity data dictionary structure. This structure saves

* t.he data dictionary information input by the user and is

merged with the diagram information to complete the data

dictionaries for activities. Specifically, the user must

input, the description field, alias name field, alias comment.

field, version changes comment. field, and related

requirement, number field.

The line structure contains the information needed to

locate, label, and draw the lines as well as store the data

dictionary information not, derived from the diagram. Each

I ne is give n a numeric structure type that, identifies it.

and specif ies how it connects to other lines. In addition

to the la;bel identi fying the data it represents, a I int may

'-S

have ICOM labels attached to it, specifying the line as a

- boundary arrow, and a label that is placed inside a TO-ALL

or FROM-ALL circle attached to one end of the line. Also,

two numbers are defined that identify the graphical entities

drawn on each end of the line (ie. arrowhead, tunnel, dot,

turn right, or branch left, etc.). Finally, the lines are
p

stored in binary trees with the root nodes linked to other

root nodes by C pointers. Figure 7 shows three groups of

lines and the corresponding linked list structure is shown

in Figure 8. It can be seen from this figure that this

arrangement is advantageous because the tree arrangement

maps closely to how the line segments actually connect to

one another and because C supports the simple recursive

functions used for traversing binary trees.

Dowa
.3 Box 2 3 6

. 1.
.7-

boat

iii 2
I ~ 12

Figure 7. Example Group of Lines

.-

V.'

": 4-12

I n'
[j ."

2 130

Figure S. Resulting Linked List Structure

The line structure uses a C pointer to point to a data

dictionary structure representing a data dictionary for a

data element. This structure saves the data dictionary

- information input by the user and is merged with the diagram

information to complete the data dictionaries for data

elements. Specifically, the user must input the description

field, alias name field, alias comment field, related

requirement. number field, version changes comment field,

data type field, minimum value field, maximum value field,

range of values field, values field, part of field, and the

composition field.

The squiggle line structure contains all the

information needed to draw a squiggle line. A squiggle line

is strictly a graphical entity, needing only four coordinate

pairs to complete its specification. Again, a squiggle line

classification number is assigned to each squiggle on the

diagram. The squiggle lines for a particular diagram are

4-13

Iw

* ~stored in a singly l inked l ist, ; there fore, each struct ure

con~tains a C po)inter to) anot her squiggle I ine structure.

The header s t ruct ure contains al I the info rmat ion

needed to diraw , locate , and c lass ify t he seven header field (s

of an SA diagram. Except. For the number f ieldi, each of the

OP fields is included in the data dictionaries for the diagram.

S ince each d iag ram onlIy has one header , onlIy a s inglIe C

pointer is maintained to save this information.

The last primnary storage st ructure, the footnote

structure, keeps all the information needed to draw, locate,

and classify a matching pair of footnote labels. Like the

squiggle line, this information is strictly graphical. The

footnote structures for a diagram are stored in a singly

linked list; therefore, a C pointer to another footnote

structure is defined.

W' Data_ D ic tionary Information Derived -from _the Graphics

Information. So far in this section, the graphical

informat ion stored in the various structures and the data

dictionary information not. contained in the graphics

information has been identified .The purpose of the

f'ol lo)wing paragraphs is to identify the data dictio(nary

information that is derived from the graphics informat ion.

In an acti vi ty data dictionary, the header structuire

di rect I y prov ides f'ive data dIict ionary inputs and part. of' a

- - i x t h. The PROJFCT, DATF, and AUTHOR f i e Ids are exact.

y. mat'thevs i th the f ields of' the same ti t i e inr t he dut a

. J6 -A .. . -f ,..

~r r r r . ~ r n w ~ r r.-w 'fly w-rn w-r - wr'~2~~r J 9r V 7'V E W IItr' - -W w .

A

(I i (t i ona ry The NUMBER f i e I d of the data dI ct. iona ry i.; t. he

reu I I o f a ppe nd i ng t he numbe r o f the act. i v i ty bo x t.o the

N NODE field of the diagram. The PARENT ACTIVITY and VIRS j(N

fields of the data dictionary are synonymous with the TiTI,PE

and REV fields of the diagram, respectiv'ly.

p. The INPUTS, OUTPUTS, CONTROLS, and MECHANISM fields of

the daita di kt ionary are d,-rived by matching the starting and

ending points of' a line segment, with the boundary of the

act ivity hoxes. When one of the line's start or end points

matches a box boundary, the side of the activity box

determines the appropriate field and then tree traversal

algorithms can find the closest label to the box.

In a data diet onary for a data element, the header

structure directly provides four data dictionary input.s.

The PROJECT, DATE, and AUTHOR fields are exact matches of

fields with the same title in the data dictionary. Also,

the VERSION field of the data dictionary is the same as the

REV field of the diagram.

The SOURCES and DESTINATIONS field of the data

dictionary cannot consistently he resolved by the tool. It.

is possible in an SA diagram to have a valid data entity

that has no sources or destinations due to the pipeli ne

ta tre of t.he language. Currently, the dat-a (I t ionary is

unahie to handle this situation with the prec ision needed

, " or mp I(mentat, ion wit h the tool ; t herefore, the tool Ieavs

Sth,;,, spaces hI ank .
I

'

~~~..: ..-.... ... . ........ :.:. .:........... . . .. :............ .....



This section discussed the design of' the data

structures and the information they contain. This

information is used to generate Output products, and the

information is stored in files. These files of information

are discussed in the next. section.

Data Files

ike the data structures used by the t.ool, the data

files each have their own format that is different. from

Urscheler's prototype. The tool is capable of creating five

different. data files, two that save the raw data (graphics

and data dictionary information) and three that save the

output products from the tool. The following paragraphs

briefly describe the files arid their formats.

The graphics information from the diagram is maintained

in an ASCII file labeled as <fitename>.gph. In the file,

* .squiggle line, footnote, box, and line information is saved

in a precisely formatted manner. If a field has heen left

blank by the user, a "$$NIJI,,$$" string is placed in the file

as a place holder. Appendix C contains an exact, definition

of how this file is stored.

The data dictionary information from the diagram is

maintained In an ASCII file labeled as <filename>.dbs. The

datla dictionaries for each activity and only the data

dict ionary data elements defined by the user are saved in

this file. The design of this file format is the result of 

another thes si. in prog ress at. t.he time of' this writing

.,- I



am

do

(Conn,lly, 1987:). This format. is also defined in Appendix

C.

The facing page text for the diagram is saved (at the

-. option of the user) in an ASCII file labeled as

<filename>.fpt. The facing page text is a copy of the

- descript-ion fields of the data dictionaries for each

activity box. The format in which it is saved is specified

in Appendix A.

The user also has the option of saving in a file a

formatted copy of all or selected data dictionaries. This

file is an ASCII file that is labeled as <filename>.dd. The

format, for this type of file is also specified in Appendix

A.

The user has the option of saving a copy of the diagram

generat.ed. This file contains a SUN raster image of the

diagram that is labeled as <filename>.dmp. SunView raster

functions are used to read the diagram image from the screen

and save it in the SUN's raster file format. The user may

obtain hardcopy by using the UNIX "lpr -v" command.

Cod ing Approach

Having completed the design specification, defined the

d;ta st ruc tures, and defined the fi le formats, the next step

was the actual coding of the modules. As previously

meril i oned, t.he programming language used to implement, t.his

" tfl was C. This section describes the coding approach.

@
r' -. -- * •4



A top down approach (Pressman, 1982:232) was taken in

developing the modules. The process started by developilg

the main control module thatt called the appropriate

functions associated with each menu selection. With the

control structure and numerous module stubs in place, the

module stubs were replaced with the real code and each

stub's lower level modules until the project was complete.

Internal documentation of the code followed that

prescribed in the AFIT/ENG Software Development

l)ocumentation Guidelines and Standards. Each file began

with the standard file header (Hartrum, 1986:38) and each

module began with the stc.id(ard module header (lartrum,

1986:40). In addition, C language comments were provided in

the code to amplify and clarify sections of the code.a
Testing Approach

Testing was accomplished in conjunction with the coding

phase in this project. A slightly "impure" integration test

method was applied (Pressman, 1982:298-9). The procedure

was impure because neither the depth-first or breadth-first

incorporation approach to integrating new software into the

existing software was consistently applied due to the time

constraints of the project. Typically, about ten modules

," were written and added to the software before applying L.he

tests.

Obviously, an exhaustive test. was impossible for a

project of this magnitude; however, the tests conducted

"4

-'S

1 S ,.... , , , ,",'--.--", ' ' ,' . ,, -., - . .' ., ... . . -.- . - - . . . .- -- - . -.



attempted to assure that. all module paths were exercised at

least once, that all conditional statements were verified,

that each module provided the needed function, and that

errors were properly handled. To assist future

maintenance actions on the code, debugging "printf"

statements identifying its position in the code were used to

alert the user when an unanticipated condition did occur.

Summary

This chapter discussed the design decisions based on

the requirements and objectives of the thesis. Five

reasons why the SUN workstations met the hardware

requirements were stated. Second, portability of the tool,

reusability of the Urscheler code, and suitability of the

SunView environment were issues covered by the software

considerations. Considerations from previous studies found

data dictionary constraints that were maintained in this

tool and found design decisions that were carried over from

past works. Next, the screen layout, menu system, and use

of voice were identified as the key human/computer interface

topics that concerned this tool. Also, decisions involved

in the design of the data structures and data files were

-J identified. Finally, coding and testing approaches were

explained in the last. two parts of the section. Given this

information, the next. chapter discusses t.he tool's operation

and the resuzlts of the tool's evaluation.

N

MI-

I,



" V. SA TOOL OPERATION AND EVALUATION

The issues and decisions surrounding the design of the

tool were discussed in the previous chapter. The purpose of

1P this chapter is to provide a broad overview of' how the tool

operates and to report the results of the tool's evaluation

by a group of AIIT students.

This chapter will first discuss the tool and its

function and then report the evaluation results. The first

section presents the tool's function in six parts:

initialization, graphics functions, data dictionary

functions, facing page text functions, input/output

functions, and miscellaneous functions. The user is

U referred to the User's Reference Manual (Appendix J) for a

complete discussion of all the available functions. The

first part discusses the initialization of the tool.

Operation

Initialization. To start the tool running, the user

must first invoke the Suntool environment. This is

accomplished by entering the command "suntools" at the UNIX

prompt. Once a C-shell window has been opened, the user is

ready to run the tool.

The command to start the tool is "SAtool ." The tool

was designed to accept a -v option to enable the use of a

a

.--

-, -".,, ,"., , -' . -"., '. . , . -, .- a . -". .," " ""., ' " " . .-'"' ."". . '",.,'".." ,1... " ., ,' '"- . . .. '"'' -i-:, . ." '"' , L, .." , ,-, -"" ." , . .



'aj

I)ECTAIK voice synthesizer to provide audio feedback for

the user; however, this feature was not implemented due to

the time constraints involved in the project. The user is

now ready to begin using the tool and may select one of the

. oval buttons in the Selection Window for a menu of choices.

Graphics Functions. The graphics functions, located on

menus under the "EDIT DIAGRAM" oval, contain all the

functions needed to draw and label an SA diagram. The

functions make it possible to add a new or edit an existing

graphical entity (activity box, ICOM line, squiggle line,

diagram label, or footnote marker).

A Five operations are permitted on activity boxes.

Adding an activity box involves setting the location of the

box as well as entering the box name and box number. To

edit one of the box attributes, the user identifies which

box by placing the cursor inside the box and clicking a

mouse button. Each of the operations involved in adding a

box, setting the location and entering the name and number,

may be changed by picking the appropriate menu selection.

[. Finally, an existing activity box may be deleted.

Six operations are permitted on lines. Adding a

line involves selecting the two endpoints using the mouse

and selecting the begin and end attributes from their

respect.ive menus. If the end attribute is a Branch or Turn,

the tool automatically positions the cursor at. the end of

the Branch or Turn to continue drawing the line. To add or

I%

4J

r-2
U,

6



change a line label, the user seLects the menui function,

"" "Edit Line Label,' and moves the cursor to a point, on the

line and clicks the mouse to select the line. The text. is

then entered from the keyboard. A TO-ALl,, FROM-AL, or ICOM

label, specified when a line is added, may be changed by

selecting "Edit, TO/FROM Label" or "Edit ICOM Label."

Vinally, the line may be deLeted entirely or redrawn with

the Redraw/Delete Line" selection. The choice of these two

operations is made by clicking a mouse button. The Redraw

• -function deletes a line and any connected to it and starts

*. the user re-drawing the line with the original beginning

attributes.

Fifteen operations are permitted on the seven

diagram header labels. Each diagram header label may be

first added, or later edited, for a total of fourteen. The

fifteenth operation, useful at the start of a new diagram,

allows the addition of all seven header fields without

selecting each operation individually.

Four operations are permitted on footnotes.

Since the footnotes are created and maintained in pairs of

identical boxes, creating a footnote box pair involves

first specifying the number label for both boxes, then

.', moving each box to its desired location. Changing the

footnot.e number wil I change the number in both boxes while

rhanging a footnote location moves only one of the pair at. a

. t.ime. To delete a footnote box pair, the user places the

-3

A- d%



cursor ins ide one of the foot not e boxes and (I i'k s a mouse

button; both boxes are th_- deleted from the diagram.

Two operations are permitted on squiggle lines,

creating and deleting. To create a squiggle line, the user

is allowed to draw three, "free-hand" line segments. To

delete a squiggle line, the appropriate squiggle line is

selected by placing the cursor on a point on one oF the line

segments and clicks a mouse button. The squiggle line is

then removed from the diagram.

Having considered the functions needed to create and

edit, the SA diagram entities, the next paragraphs discuss

the functions needed to complete the data dictionary

information.

Data Dictionary Functions. The data dictionary

functions, located on menus under the "EDIT D)" oval,

contain all the functions needed to enter and edit any data

dictionary information for the diagram. The information is

ent.ered via the Data Dictionary Window.

There are five operations available for managing the

data dictionary informal ion. "ADI) DD" is used to create

st orage for data dictionary information for a line. The

user se l(cts the line by moving the cursor on the line and

clic'king a mouse button. The data dict ionary template is

pl a (d in t h, I)at, Dictionary Window with the number in

parentheses be 'ore the f'ie ld name spe(,ifying the widt.h o

the fihild. While ent.e ring the information, the "ADD MORIF

I.

It .- ----.-. -I.4--- "' '" ':- '"" : . - - - - -:" - " -"'-" " ""':'•" ' " " - -"-,



ALIASES" selection adds another alias block to the existing

template. Reviewing or further editing an existing data

dictionary is the purpose of the "EDIT I)D" function.

(Recall that dat.a dictionaries for act ivity boxes are

automat ical ly generated.) Selecting "DI)-IINISIIEI)" causes

t.he information in the Dat.a Dictionary Window to be

() I ect ed and st.ored in the data dict i onary data structures.

Finally, "SAVE DD IN FILE" permits the user t.o select one or

more dat~a dictionaries or all data dictionaries for saving

in an ASCII file in the format specified in Appendix A.

Facing Page Text Functions. Located under the "FPT

FUNCTIONS" oval are two facing page text fur.tions. Both

operations build the facing page text according to the

format. in Appendix A from the descriptions entered in the

U data dictionary. The first function displays this

information in the Data Dictionary Window while the second

function puts the information in an ASCII file.

Input/Output Functions. The input and output functions

are located under the "RECALL DIAGRAM" and "SAVE DIAGRAM"

ovals, respectively. A previously saved diagram may be read

in with the "RECALL DIAGRAM" function by specifying the

fi l ename (without. a dot ( ) extension) • The program checks

the working directory for files named with the given file

name plus ". dbs" and ".gph" extensions and loads their

infr)rmat. ion into the data structures.

,'



The diagram current ly stored in the tool 's data

st ru(tures may be saved in a s imi lar manner, w i th the too I

adding the dot. extensions to the file name. The user

"*- selets either "Save for DB" to create a "dbs" file for

saving in a relational database or "Save Local" to create a

file with a ".dbs" file that is not compatible with the

database tool, yet remains compatible with this tool.

Miscellaneous Functions. The miscellaneous functions,

found under the "MTSC FUNCTIONS" oval, contain operations to

save a file that generates a hardcopy of the diagram,

to manipulate the working directory, to erase the current

diagram and data dictionary, to redisplay the Diagram

*' Window, and to quit the tool. "Make Diagram (Normal)" and

"Make Diagram (Sideways)" may be selected depending on the

desired orientation of the SA diagram on the page. The user

specifies a file name and the tool adds a ".dd" extension to

the file that can be printed on SUN laser printer. The

current working directory is displayed in the Message Window

-: by selecting "Display Directory" or can be changed by

selecting the "Change Directory" function. "Start New

,. Diagram" erases the Diagram Window and empties the data

structures of the information being stored. The "Redisplay

Diagram" and "QUIT" functions are self explanatory.

Given this broad overview of the tool and its

operation, the next. section discusses the results of an

*t evaluat ion of the tool.

3 - b;

-'-I



Evaluation Results

Two graduate software engineering classes at AFIT used

the tool in conjunction with a homework problem and

evaluated their experiences with the tool. In this section,

the evaluation methodology is described followed by the

-conditions surrounding the evaluation. Finally, the results

of the evaluation are presented.

-, Evaluation Methodology. The student's reactions to the

tool were gathered using a quantitative questionnaire

developed at AFIT (Mallary, 1985: 81-5; Foley:1986). For

the purposes of this evaluation, the use of this method was

4 assumed valid. The questionnaire consisted of 12 questions

regarding different aspects of the tool. Figure 9 is an

example of one of these questions. Figure 10 is a list of

the 12 questions. Question 12 gathers an overall rating of

satisfaction that was compared to the average of the other

11 questions.

Each of the first 11 questions was rated on a scale

from -3 to 3 on four adjective-pairs. For each user i and

question j, these four scores were averaged to give a

'-." reaction score Rij. Each question also had an overall

sat. ist'action score for (-orrelation with the average of the

ad.jective-pair score (unused in this evaluation). Finally,

to weight. the adjective-pair score (Wi.j), each question

allowed the user to rate the impor-tance of t.he part ic-ular

*t'act or to him on a scale of 0 to 1.

S)"

:;.. ,+'+ ,< .;". -¢ -.- -- -. : . , .':. :"+ . ---, ,-'- 2, .. .. ,.:<.?-'-',.:'- -,"-.'-> .;,":
-y. £ ' ' [ < .. ;'- € '>- - . €,' '""' "v'-,.e,., ", '-v -,'o --•:



From this information, a normalized satisfaction score

NS for each user was computed asw 11
NS = 1/(3*Ni) Rij * Wij

j=1

where Ni is the number of questions whose reaction score Rij

was not zero. The normalized satisfaction score indicates

the degree of user satisfaction according to Table 1.

1. Sstem Feedback: The extent to which the
system kept you informed about what was going on
in the program.

insufficient . . .. . .sufficient

unclear , L I - clear

useless _j___ , , I useful

bad good

unsatisfactory , ,,L , - , satisfactory

To me this factor is
unimportant important

Comments:

%I Figure 9. Example Evaluation Question Format
Source: (Mallary, 1985:111)

Evaluation Conditions. Thirty-three students were

assigned to make one diagram using the tool and complete the

evaluation based on that experience. Each student was given

a guide that explained the workstation's login and logout

5-8

"



B~a i I1ev and Pearson Rat i rigs

NORMAL.I ZIK S('ORF TRANS LATI ON

+-1 .00 Maximally satisfied
+0.67 Quite satisfied
+0.33 Slightly satisfied
+0.0 Neutral
-0.33 Slightly dissatisfied
-0.67 Quite dissatisfied
-1.00 Maximally dissatisfied

Source: (Mallary, 1985)

procedures, error recovery procedures, menu selection

procedures, and the components of the screen layout.

Information regarding the exact function provided by each

menu selection was not available to give to the first class

* of students; therefore, it was not provided to the second

class to maintain consistency across the two classes.

Evaluation Results. The average of the normalized

scorE's for the first. 1 1 questions of the eval uat ions was

J.

0.295 or about "Slightly Satisfied" according to the

translation or Table 1. The scores ranged from -0.182 to

.682 with a standard deviation from the mean of 0.294. 1'h is

m rwpa r e SC I o sev] y w i th an itvec r ag e 0 . 3 33 o v era II

sat s fart ion" rat. i ng g i yen on quest. ion 12. On the average,

the eva I tators used the tool about. 138 minutes. Tabl Ie I I

0hows how the evaluation broke down by question.

............................................

-0.*--~ . 1 33 Slight y d i .a Ms d. '-



System Feedback or Content of the Informat ion
I) i played. The extent to which the system
kept. you irnformed about what. was going on in the

i ,) program.

p . omrmun i cation. The methods used tlo

commun i cat (, w i th the too I

"3. 1rror Prevention. Your percefpt i<n (,I' h0,' 1."1I l
the syst em prevented user i nducc ( ('rr

1, Error Re(covery. The ext (ert arin ':e.: .
whic h the ft f rr i :il,,d >,ri to r'( ' ,r- F r]
use ( r n(iu,,c e ! r' ror'-' .

5 .:.)( ('li rit t l(i' d ((: li (I r'; l a( c 't i ) * o : r,.

Sx ' t tt i r.I . YI pI (r',e p)t ion ;Is t () the

r,,. pr(j, id(el by 'I.h., syst.em based on your
,'-" (",,[\)I ( t {t. I O)rTI;

.( -)W i(eri('(- in t'he System. Your feelings of
as .,urtnce or certainty about. the services
pirov ided by the system.

H. Ease of Learning. Ease with which you were
able to learn how to use the system to
generate IDlEIFO definitions.

9. Display ofIfrtmation. The manner in which

both program control and IDEFO information was
displayed on the screen.

10. Feeling of Control. Your ability to direct. or
control the activities performed by SAt.ool.

,-. 1 1 . Relevancy or System Usefulness. Your
perception of" how useful the system is as an

aid to a software developer.

12. Overall Evaluation of the System. Your

overall satisfaction with the system.

F"igure 10. Evaluation Questions

N".

1.:



L4'

TABIE I I

M Average Normalized Score by Question

QUESTION AVERAGE NORMALIZEI) SCOR
1 0.453

2 0.399
3 0.060
4 -0.056
5 -0.055
6 0.318
7 0.406
8 0.406
9 0.453

10 0.346
11 0.475
12 0.333

The lack of adequate documentation of the tool for the

evaluation probably contributed heavily to the lower scores

received on questions 3, 4, and 5. One user commented, "1

would rather read and see example displays, as opposed to

the trial and error method (of learning the tool )." With

regard to question 5, the users frequently commented they

could find no documentation, and four users failed to even

rate t.he question. Regarding question 4, users described

; mistakes they made in drawing the diagram, noting they were

unablFe to undo the error. In every case there was a menu

select ion avai lable to undo the error, but the person was

apparrently unaware of the selection's exi tence. By the

sam( reasoning regarding question .), the users probably made

mre errors experimenting with the menu select. ions trying to

-1
" LA.S - ".2.. ". .,. A,- L S..a..a 'A.A..



determine their functional ity, leaving an impression of

poorer than expected error prevent. ion capabi I i ty.

The users offered suggest ions for improving the tool

,'or instance, one suggested that a help selec tion be added

t() each of the menus. This wou ld be a usefu I and

st raightt'orward add i tion to the t oo I Also, it was

suggested that a universal undo command for each menu

selection be made available. This would also be useful, but

much less st.ra ightforward to implement..

Summary

This chapter discussed the operation of the t.ool and an

evaluat ion of the tool. It. gave procedures for invoking the

Sunt.ool environment and the SAtool. Each operation

permitted on the five major graphical entities (activity

boxes, [COM lines, squiggle lines, diagram labels, and

Sf,),tnot.e markers.) was identified and described. Next., the

dta dict. i onary capabili ties of the tool were described

fol lowed by the facing page text. functions. Fol lowing this

des(cription was a discussion of the input/output functions.

Finally, some miscellaneous functions provided by the tool

wore d1scribed.

An e-valuation of the tool was performed using a

qu.nt, i tat. ive quest ionnaire and statisti cal analysis of' tht,

' resu Its. The method of comput. ing the norma l i zed

sat i.itact. ion score was det.aild as welIl as the (onditions

Sinfr wh i h the expr iment. was c(onduct d . rht res;ult s 1'Vund

01 •loo

• _ , .- . .-. '. - .- ." .. .'. ,-. , . .' .'. . -. 
.

, " . " ,' .g' .'. .' ,. '.. .', '. - : .. '.. '. . ..- ' ." ,L".'A., ,r., A .,. -,0. .-.. " - "



t hat users we-re 'light I v sat i sf ied' w ith the perf'ormance(,( of'

t he too I

The f o I Ilowi ng chapter presents the researcher' s

conclIus ions from conductinrg th is cLhes is and recommends

several future projects as a resulIt of' this etf'fort.



• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '. -- .:. - :t-, , , , . . ,, . -, . . .. , . 7 IT W . - T. W. - T - T- v." - u "_

V I .CONCIUSIONS AND RECOMMENI)A''IONS

Cone I us ions

The purpose of this thesis was to specify and design a

tool that allows a user to interactively create and edit

structured analysis diagrams. In addition, partial data

dictionary information is automatically generated from

graphics information by the tool and is supplemented by

inputs from the user.

'a(ch of the three phases of this effort was

accomplished successfully. During the first phase, the

lUrsrheler implementation was analyzed and the reusable parts

. of his software were identified. Also, a graphical SA

language was derived from several sources and a subset

identified for implementation in this tool. During the

second phase, the structured analysis and data dictionary

methodologies were combined and the tool was built and

successfully tested. During the third phase, the usefulness

of the tool was evaluated by polling people who used the

Itool for a classroom software engineering project.

The evaluation found the users were "slightly

satisfied" with the performance of the tool. Three

questions rating the documentation, error prevention, and

erro r re(overy capabi I i ties were given signifi cantly lower

ratings because no documentation of each function provided

the t.oo1 was avai labl e at, the time of the experiment.

- I

n

L*



a.

Although the object ives of this thesis were

accompl ished, there are several aspects of the tool that

could be enhanced to make it a better product. These

aspects are enumerated in the next section.

Recommendations

The recommendations are divided into two categories:

small scale projects and large scale projects. Presented

first are the small scale projects.

Small Scale Projects. The following are recommended

small scale projects for improving the tool:

1. Integrate the use of voice. This project.
should go back and analyze the "put message V"
functions that. provide the user with feedback
in the tool's Message Window. This function
was designed to send messages either to the
Message Window or a Dectalk voice synthesizer
or both. Currently, all messages are routed
to the Message Window. Developing this
capability could enhance the human/computer

interface.

2. Improve the method for making hardcopies of
the diagram. The current method reproduces a
pixel by pixel image of the Diagram Window
into a SUN rasterfile. A method should be
considered that would command the printer to
draw lines and text rather than generating
pixel by pixel images.

.13. Improve the method by which the user inputs
data dictionary information. The current,
method uses a generic editor that is unable to
prevent the user from entering information
past the end of the different length fields.
If the information exceeds the field boundary,
the information is truncated when it. is saved.

A method should be investigated that wi Il not.
allow the user to enter information beyond the
ond of the field.

F.~

a;-'



I -

1 . Compat ibi I i t.y test th is tool with FIoley's t)ol

via the relational database. The data

dictionairy information for this tool was
designed t~o match that of the Foley editor.
Testing should be conducted to ascertain the
compatibility of the two tools.

5. Provide on-line help. Currently, help from
the tool is provided via the Message Window.
Due to the size of the window, help messages

UJ tend to be cryptic. Therefore, a method of

providing more in-dept.h explanations of
commands from the tool should be considered.
Adding o(ne "help" selection to each menu has

been suggested.

Large Scale Projects. The following are recommended

large scale projects for improving the tool:

S.Convert the tool from SunView to a standard
graphical package like GKS. Converting to a

graphics standard would increase the
possibility of' porting the tool other

workstat ions.

2. Make the tool capable of handling an entire

project. This would require adding more data

structures to maintain the graphical and data
dictionary information for all the diagrams in
a given project. This enhancement would

allow more consistency checking algorithms for
the data and allow the tool to generate more

complete data dictionaries for data elements.
Also, a method to walk through the diagram
hierarchy would need to be implemented.

Examining current commercial tools and their
"explode" capability, the ability to see an
activit.y box's decomposition by exploding the

box for a "closer" look inside, might be

he I p f'u I

3. Remove the necessity of maintaining graphical
information. This would require an analysis
of the data dictionary format, to ensure it, is
(';tpable of' holding all the information
c'ontained in a graphical picture. Once th i s
is proven, it. should be possible t.o
automat ical ly draw the diagram from the
information ont ained in the data dict-ionary.

B,

I'

++ iI~ l l+lil IL II 1 ,.~ll., 4~ rT ,' ." t 
"

+ . i
m

. . m , _ • , , " :.: . " ,. .. - . i + + ' , , '



4 Add c olIor to enhance t.h e h uman /computeor
iritertac C (olors might be use t~o rfet
the presence of data d ic t. ionary i n format. ion
f'or it line or- to ref'lect the presence of' poor
cou.Ipl1inig and -oh es ion character is ti os among
the act ivi ty boxes to suggest. just of* few of'
the poss ibi I i t ies. Here, a trade-of' wit~h
fpo r t.;.bi Iity shoul1( be caref'ul ly considered.

5. Redo the entire project, in Ada. This project,
woulId be cont.ingen t upon the upgrade of'
SunView to support Ada. This project would
make the tool bet. te r su ited for use by o t.her
agenc ies in the Ui.S. government, given i t~s
requ irement. for us ing Ada for all new
sof'tware developments.



A\pn d ix A: All IT STRUCUIZ) ANALY~ IS SYNTAX

The purpose of' this append ix is to precisel y de t joe the

rrma ts of' t.he doc umentI.s genera ted by t he str uct ured

analIy i s tool The AFrrI syntax to r struc tuired anal ysis

diagrams is derived f'rom SAI)T and IDEI)F' graph ic syn tax.

Al so, the f'or-mat, tor- the data dicti onary entries , and the

f'ormat~ for facing page text is speci tied.

A)Tand IDEV(

A tabulation atf the SAI)T language's syntax and concepts

was presented in a paper by Douglas Ross in 1977 (Ross,

1977). Figure 11 is the figure presented in that. paper.

The subset o f the SADT syn tax used by I DEI% was def17ined

in the "User's Reference Manual," published by the Materials

Laboratory at. Wr-ight-Patterson AFB, Ohio ( IIFF0 Manual,

1 98 1 ). Some of' the language used in example d iagrams was

Uriot described in the text. Therefore, Figure 12

was generated to summarize the IDEF() syntax in a table based

on the example di agrams and Lext in I IFo user's mana

Add it i anal I y , the colIumn cal lIed " term" was the name by wh ich

each notat ion was ret erred. Some entries in the Ross

art i (, Ie tab] e are methods and riot. graph icalI ent i ('5e

h 4rf17o rf , t h ey canno t. be i mplIeme nted i n a CA 1) too I .An

example ' t h is is Lino- .36 in 1' i g r 1.

% %



.- Not all the graphical entities presented by Ross were

implemented in the IDEF0 language. Figure 13 is a summary

of those notations.

-U 
.

W"

*,. - ....- A31

-- v

S ...... .-, S...... * .. . ,+",. .. ... I --

...... .. .. .'.. , ...... IK.

. --- -.1. - ... WI. I. 1 .- , l
I CE &0r ~tc ~ .. A.2

- IA..'

."3..+ 1. *,°¢ .:"+o: ' ,.,ri.ot; %.,(+* ;+ ,o."

10 i*~c IC ;+ '~~i .

S. " tA.I: *I +h $- **.c +. , ........ * +r ....... o S i, o
-" 'ISIC[ .. $ SO .6I .- *.* At

CS4l'

,s .......... 2 t .2: ' I..S*aI~s.___,__ _____ _____.__"O.O.. S+ .. ... . ,=.'
- . i{++"" ... o. 'SO- P~i l 0; Sla :i+ * ,"

*A i iIcii -44. I " I.

6-W. W . . D .AS

71 t.I4 DW SAt 51- E'D .1 . . k

T Mint. ZS1VW*TlOS +'. +7 I l~lS~l~ll+ o I S{ IIA CIAI5 l l

Figur 11.IR SAD LagaeFaue

a *. in. l~l u , 0 i I '..L .I~Z lG- >'Slt l Io ...? , I ciS~A

SS-.. AA....A.. .OI .5...... . OMP A
.. - . ......,. ______________________ ___....______........._____-_

Figure 11. SADT Language Features ,

Source: (Ross, 1977:20)

A-2

i -. :.:+.:--:.-+ ..- ...- - -: . - -. , . -. . . + .- . -. .- -,-.... . .a -. > : .. :.*.** - .. :.- +- ,; :. ---- , a -



Ross article User's Manual
line number Term Reference

I BOX 2-2,3
2 ARROW 2-2,3

3 INPUT 3-26 (FIG)
3 OUTPUT 3-26 (FIG)
4 CONTROL 3-26 (FIG)
5 MECHANISM 3-11
6 ACTIVITY NAME 2-3,4
7 LABEl. 2-3,4
12 BRANCH 3-9
13 JOIN 3-9
14 BUNDLE 6-14
15 SPREAD 6-14
18 BOUNDARY ARROW 3-17
20 DETAILED REFERENCE NUM 2-3
22 2-WAY ARROW 3-26 (FIG)
24 TUNNEL ARROW 2-3
25 TO/FROM ALL 6-21
27 FOOTNOTE 3-26 (FIG)
28 META-NOTE 2-3
29 SQUIGGLE 3-26 (FIG)
30 C-NUMBER 2-3
31 NODE NUMBER 2-3
32 MODEL NAME 3-26 (FIG)
33 ICOM CODE 4-8
37 FACING PAGE TEXT 4-I
38 FEO (FOR EXPOSITION ONLY) 6-5
39 GLOSSARY 2-3
40 NODE INDEX 2-3

Figure 12. IDEF 0 Graphic Syntax

Ross article User's Manual
- line number Term Reference

16 OR branch NOT FOUND
17 OR join NOT FOUND
21 CALL ON SUPPORT NOT FOUND
23 2-1 WAY BUTTING ARROW NOT FOUND
26 NOTE NOT FOUND
36 REF. EXP. "DOT" NOT FOUND

* Figure 13. Graphic Notations Unused by IDEF 0

.\- ;3"0!



An additional graphical feature is used in both the

Softech and IDEF 0 diagrams but not described by IDEi," or the

Ross article, is the use of the stash (/) to separate

the forward and backward content of double headed arrows.

This syntax is described in other Softech literature

describing the SADT methodology (Softech Inc., 1976:4-21).

AFIT Structured Analysis Diagram Syntax

A sampling of structured analysis diagrams generated by

AFIT students and faculty found the syntax adopted by IDEF0

is sufficient for performing requirements analysis. None of'

the graphic notations described by Ross and unused by IDEF 0

were found in the diagrams sampled. For these reasons,

Figure 12 is also the AFIT syntax.

Subset of AFIT Syntax Implemented

Figure 14 is the subset of the AFIT structured analysis

syntax that was implemented by the tool. l)ue to the time

limitation for implementing the toot, some of the low

priority constructs were not implemented. Presented next

are the reasons the five graphical (constructs were not

implemented by this tool.

Meta-notes are additional comments about. a structured

analysis diagram and are placed on the diagram. This

feature was not implemented because the diagrams must. be

tied to the data dictionaries as much as possible.

*_", ,



Ross article User's Manual
I ine number Term Reference

1 BOX Z- 2 , 3
2 ARROW 2 - 2,3

3 INPUT 3-26 (FIG)
3 OUTPUT 3-26 (FIG)
4 CONTROL 3-26 (FIG)
5 MECHANISM 3-11
6 ACTIVITY NAME 2-3,4

7 LABEL 2-3,4
12 BRANCH 3-9
13 JOIN 3-9
18 BOUNDARY ARROW 3-17

22 2-WAY ARROW 3-26 (FIG)
24 TUNNEL ARROW 2-3
25 TO/FROM ALL 6-21

27 FOOTNOTE 3-26 (FIG)
29 SQUIGGLE 3-26 (FIG)

30 C-NUMBER 2-3

31 NODE NUMBER 2-3
32 MODEL NAME 3-1b

33 ICOM CODE 4-8
37 FACING PAGE TEXT 4-1

Figure 14. Implemented Graphic Syntax

Meta-notes do not- correlate to any data dict ionary entry.

According to Ross:

There is no way that. information in metanotes can
part icipate in t.he informat ion content of the
diagrams, and therf-fore they should not be used in
an attempt to aftfect the interpretation of the
diagrams thtemselves, but only for mechanical
operat. iins regarding the diagram'.s physi cal fo rmat
()r e-xpression (Ross, 1977:30).

BjndI, ;and .spread were not. implemented h,-ause these

( ()nslt.ructs can be represent.a(is at . ,p(,u a I ease of the



Join and Branch, respect, ively. Implementing both sets of

c,) nst. rue.ts in the tool would be a dupl ication of ef' fort.

FEO's pictorially highlight, features and special effects of

the diagram. They were not implemented by this tool because

they do riot correspond to any data di ctionary entry, except

* the description. The user should attempt to highlight,

feat.ures of the diagram in words in t.he facing page text of

the diagram.

The purpose of the Glossary is to define terms using

words and pictures. Again, because items normally found in

the Glossary cannot be directly tied to the data dictionary,

it, was not implemented.

l)ata Di ctionary Formats

There are two types of data dictionary formats, ()ne to

describ e activiLies and one to describe data el emernt.s. For

this too l, the data dicetionaries gene rated were of t. he

o'()rmat.s specified by the AI'IT Software Development

D)(cumentation Guide lines and Standards (Hlartrum, 1986).

Figure, 15 shows the format for the information insert.ed

int. t Data I)i ct i onary for Activity. Fi gure 16 shows a

'm; I , t ,d (example of t h i s type ) f (ata (d iet ionary ent ry.

gioiro, 17 shows the 'ormat for the information inisert eti

I rt( ;t )a;t a 1) i( t i (nary f()r I)at a I (,men t. . F i gure I sh w()s a

m) i t.(d exampl e f' t hi .F type of da t a di ( onary (n t r.

%A'.



NAMF: (o f aect i v i ty
TYPE: ACT Iv ITY

4q P RO JEFCT: (Project name)
NUJMBI-R: (Node number of' this activity)
DESCRIPTION: (Multiple tines allowed)
I NPUTS: (Multiple lines all[owed-one entry/1 ine)
OUTPUTS: (Multiple lines allowed-one entry/line
CONTROL.S: (Mu iIt i p Ie lines al lowed-one en try/ Ii ine)
MECIIANISMS:(Multiple lines allowed-one entry/line)
Al 1,I ASS : (Names of' aliases, mul tipl~e lines al l owed)

COMMENT: (Why i. this alias needed?)
PARENT ACTIVITY: (Name of parent activity)
RIAT IREQUIREMeNT NUMBER: (Paragraph number of

textual requirements statement)
(Mult iple lines allowed-one entry/line)

VERSION: (version of this data dictionary entry)
VERSION CHANG(E.S: (Why was the last. version updat ed)
DATE: (of t ihis entry)

. * O\JTNOR: (of this entry)

Figure 15. Format, of' a Data Dictionary for Activity

• .

I''I

S. S.g r 5 om t fa D t itoar o (t v t

-6



ANI p1 t~ !.L Fl 1 1L
F I.,: ACT I \ lIT

NI NP.Rh A 1 L,

)kSh I P11 NTh his act 1,, 1 v haindlIesa irmte

r-t(uest s maipuli ateo ;1'I ta I !1 es lh I
i rwIrude, p rri t in gI ( l~a tIles str iri2f lo ies
on t he NS5.5, and rpuiest mnrji t'i es f'rn(m he>1.

WI (A! TIS:

>-ISujS & DATAI

0,5 FlIES
F.I LL F TI ,

ht 'WI M 111 N

RES( INEEN &-BER I).

'FIAN I . o

AEN TH)N : T. Hr u

1-1L p r~ - t( - V



a

NAME: (of this data item)
TYPE : DATA EI.EMENT
PROJECT: (Project name)
DESCRIPTION: (Multiple I ines al lowed)
DATA TYPE: (it' known)
MIN VALUE: (if applicable-multiple I ines al lowe(i- I/I iri,
MAX VALUE: (if applicable-mult iple I in s al I w d- I / I i ,
RANGE: ( i f app I i cab I e
VALUES: (at lowab I e values, it' appropr i ate - mul t i ple

I i nes a I I owed- I en try ne r I ine
PART OF: (parent data element - multiple lines

al lowed-I ent.ry per line)
COMPOSITION: (sub elements, it' any. mul t iple I i nes

al towed - I entry per I inc
ALIASES: (Names of aliases, multiple Iine:- all owed

WHERE USED: ( IDEFO activity number)
COMME:NT: (Why is this al ias needed?)

SOURCES: (IDEFO activity names)
DESTINATIONS: (IDEFO activity names)
IEI,ATEI) REQUTREMENT NUMBER: (Paragraph number of

textual requirements st.at ement
(Multiple lines allowed-one entry/line)

VERSION: (version of this data dictionary entry)
V1RS [ON CHANGES : (Why was the last. version updated")

DATEF: (of this entry)
AUTHOR: (of' t.his entlry)

Fig ire 17. Fo)rmat of a Data I)i't iconary for l)at;

,,.

E

,-.

t.- . . , ... -"5-"i,"" - - , .- -v . ... . ....."- "- i-". , . .. . . . , .,. ,..



U

NAME: MSGS & DATA

TYPE: DATA ELEMENT

PROJECT: NETOS
DESCRIPTION: NETOS messages and data, including files,
transferred around the network.
DATA TYPE:
MIN VALUE:
MAX VALUE:
RANGE:
VALUES:

PART OF:
COMPOSITION:

MSGS
DATA

ALIASES: messages and data
WHERE USED: A122, A135

COMMENT: Due to group's inconsistency
SOURCES:

MANIPULATE FILES

MANIPULATE FILE INFORMATION
DESTINATIONS:

MANIPULATE FILES
MANIPULATE FILE INFORMATION

MANIPULATE COMMO LINKS

RELATED REQUIREMENT NUMBER: 1.2.4.2

VERS ION: 1.0
VERS ION CHANGES:
D)ATE : 9/13/84
AUTHOR: T.C. llartrum

Figure 18. Data Dictionairy for Data

a%

\- 1

- --.-



Fac ing Page 'Text Format

'rho format for the facing page text. generated by this

tool was also based on a format. provided in AFIT's Sotftware

Development Documentation Guidelines and Standards. The

* AFIT data dictionaries are designed to (ont.ain all the

informaLion provided in the structured analysis diagram and

it s fac i ng page Lext.. To map the facing page text to the

data dit ionary, the facing page text must match exactly the

text. in the "Description" field of that activity's data

dictionary. The format and rules for facing page text are

shown in Figure 19.

1.. A heading is located at the left column and
consists of the Node number, then two spaces, and
then the Title (exactly as given on the diagram).

2. Following the headings is a section beginning with

"Abstract: ," then two spaces, followed by an
overview of the diagram. If a parent diagram for
this diagram exists, then the text matches exactly
the description given on the parent diagram facing

page text.

3. For each activity box in the diagram and in order
according to the node number, a paragraph starting
with the node number, followed by two spaces, and a

description of the activity follows the abstract.
This description will match exactly the

"Description" field of the data dictionary.

4. The lines between the heading, the abstract, and

each activity paragraph are double spaced.

5. The first line of each activity paragraph is
indented 5 spaces.

Figure 19. Facing Page Text Format

V P.

-e-

.1'

f.%



Figure 20 is an example of facing page text gener'ated

according to this format.

AO Provide Requirement Analysis CAD Too]

Abstract: Provide Requirement Analysis CAD Tool

provides the user a mechanism by which he is able
to draw activity SA diagrams. From these
diagrams, facing page text and Data Dictionaries
for Activities and Data are generated.

Al Create SA Diagrams gathers the user
inputs and converts them into graphical

information representing the diagram. Throughout
the process, the user is informed of progress
through updates on the CRT screen. The user may
also use an existing file of user inputs to
generate a diagram. Data structures are created
from which inputs to the data dictionaries may be
gathered.

A2 Create DD takes the graphical information
Opertinent to the data dictionary (activity or

data) along with user inputs to create the
appropriate data dictionary according to the AFIT
data dictionary format. The status of the process
is maintained on the CRT.

A3 Create Facing Page Text combines the
description field of the data dictionaries for
activities with the changes desired by the user to
produce a facing page text. The status of the
process is maintained on the CRT.

Figure 20. Correctly Formatted Facing Page Text

.a

12 *1I
I'



VVVWT~W T F'~'~'U-TY1'F WNW 7 W - III I; W. '-W - z-jT ''. P 'P ~

Appendix B: Example Outputs

The fol lowing pAges contain example outputs of the

tool The first page is an example of an SA diagram

generated using "Make Diagram (Normal)" selection. The

seecnd page is an example of an SA di agram generated using

the "Make Diagram (Sideways)" selection. The third page is

an example of' an Activity Element Dat.a Dictionary and the

fourt.h page is an example of a Data Flement Data )ictionary.

Finally, the fifth page is an example of the Facing Page

Text for a diagram.

I

"-,

, .

'I



AUTHOR: Caot Steve John~son DATE:11/8687 REDE
PRO.JECT ECS IREV: 1.1 JDATE I

commands

crt info

bbD rep lE Mavil al03'B(.. -

i.

-B-

v.

AUHR mall/responsehnson

PROJECT ' E' EV -: I -DT

_%- c 
nf

useral users filesllm0

T ---- " j 3

NOD TITLE, Provide Mal NLes, -

• LAl

B-2



K-A

! .0

C -

C.,.z

pa.

-~ -,

B -3 0

* .-0



NA .E :Access Mail
TYPE :ACT V TY

7RJT :ECS
NUM.BER :Al3

" ON :This activity takes inputs and user :fes
and parses user's commands to allow access to his mail.

input text
user files
ma 1

response
"-t info
user files

:- NTROLS
commr, ands

MECHANISMS

AL:IASES

PARENT ACTIVITY :Provide Mail
RELATED REQU:REMENT NUMBER

_ RS!ON :1.1
VERSION CHANGES :Changed "bulliten board" to
DATE :11/06/87
AUTHOR :-apt Steve Johnson

B

"" B-4

0

:K :rv



NAME new mai'
.YPE DATA ELEMENT

PROJECT :ECS
*DESCRIPT:O'N :New Mail is a new message generated by

the user that includes the anpropriate header in:zrrnal-on
as well as the body of thie message.
DATA TYPE

IP~ M IN VALU'_
MA %'' ALU'
RAN GE
VA.LUES
PART OF
COMP-SITC!N
ALI:ASES :none
WHERE USED

DESTINATIONS

RELATED RE:QUIREMENT NUJMSER
.ERSION :.

".RS:ON CHANCGES :chanced"- bullien board"
D AT E :11,106/837

A T 3R Capt Steve Johnson

.le



SA Provide Mail

Abstract: Provide Mail allows the user to build a
message, access any message, and transmit any
messace.

All This activity builds the appropriate
fields of the message.

A12 This activity takes all new mail

ana bb replies and sends them to the appropriate user.

A This activity takes inputs and user files
• .arn arses user's commands to allow access to his mail.

° s -

n6



Appendix C: File Format Definit. ions

This appendix defines the file format for ".9ph"

and ".dbs" extension F iles generated by the tool.

.gph" File Format

The purpose of this file is to store the graphical

information not found in the data dictionary, but

is needed to redraw the diagram. Figure 21 is part of a

".gph" extension File generated by the tool. The graphical

portions of each of five graphical entities (box, header,

, squiggle, footnote, and line) are represented in this file.

In this file, all blank entries are noted with the string:

j NULL$. The format for each graphical entity is specified

in the following paragraphs.

Box Entity Format. The activity box information is

stored first in the file. The information is contained on

one line with the line of information beginning with the box

identification number, "1." Following this number is the

screen coordinates (x coordinate followed by the y

". coordinate) of the lower left corner of the activity box.

. The remaining part of the line is treated as a string and

consfl.tutes the name of the activity box.

Ileader Entity Format. The project name and diagram

number are the entities from the header structure that are

* saved in this file. This information is stored in two

4-.-

".

-N--%'I

I ' , , , " , . - ". , ,-," " . ".



-.---. - W~ w-r r rrw W n t'*' ~ ~ -C7 -C: -Q- 'L-

1 128 177 Add l)ot
I 228 251 Add Arrowhead

328 32, Add Tunnel
1 12 398 Add SquiggIe
1 5-1 ,173 Add Branch
1 G616 546 Add JoinS2 C- 5
SA Tool
3 221 97 207 93 213 99 200 9.1

3 603 484 630 458 630 464 639 457

3 748 527 748 520 755 524 756 517
3 312 166 276 176 286 167 263 166
3 504 311 166 325 471 315 453 .315
3 596 :84 561 399 569 387 551 386
3 -100 240 369 239 378 243 358 21 1
4 139 65 15 526 1
4 182 66 218 527 2
4 675 462 501 534 3

1 193 63 649 418 4

4 494 84 71:3 509 5
10 27 144 75 144 1 512 12 139
Ii

$$NULL$$

.$$NULL$$

User Inputs
102 75 144 128 144 0 4 -1 -l
$$NULL$$

$$NULL$$
$$NULL$$

$$NJLL$$

Figure 21. Example ".gph" File

lines, the first line beginning with the header

identification number, "2". Following the identification

number on the first line is a string that represents the

diagram number. The string on the second line represents

the project name.

S-uiggte Entity Format. Following the header

information is the squiggle information. Each squiggle

entity is described on one line with the first number being

(-z

• 1



31
the squ .g I e i dent i' i cat ion number, '3" Fo I Iowing the

I lent i t' ('at ion number are four x and y (-oordinate pa r-s that.

make up the three I i ne segments of each sqquiggle I i ne

Foot.note tF i t,y Format . F'O I I owl ing t.he squiggle

in'ormat ion in the fi le is the footnot.e information. Each

f'ootr)(ot ent i ty is described on one line with the first

number heing t.he 'oot.note identi ficat. ion number, "I".

.,)I lowing l he ident, i fication number are two x and y

cioordinate pai rs represent, ing the lower left corner of each

t()otno l e box to1 I I owing t.hese coordinates is the (haracter

label for both boxes.

Line Entity Format. The line information is the last

informat ion stored in the file. Each line segment is

described in the file with five lines The first line

begins with a line identification number that is greater

thatn or equal to ten. Following the identification number

are t.wo x and y screen coordinate pairs representing the

-t.art point and end point of the line segment, respectively.

The next. t.wo numbers represent, first, the line's

(,()mbinat ion of begin attributes, t.hen the line's combination

Or end at.t. ributtes. The final two numbers are the x and y

s('r'fen c:oordina tes of the line labe I, if it exists.

The remaining four lines st.ore t.he various labels that

ar, associated wit .h a line segment. The first of these

'- I ines (second in line ent.i ty block) is the label for the

-I(OM code that. may be associated with the beginning of a 1 ine

I

'I'

% %

i
d2

,,',,, q '2''"L -- ,''':' " :"'" " ."", , ".t''.";>/%"2 *1'" '" -€' ' '''" "'€''.'""'" "2 -.. .N L. ,. ,,,



segment Input, Control , or Mechani sm. The seeond ot

these I i nes is the output. ICOM code associated wi t.h the end

of a I ine segment- The third of these lines is the I'O-All,

or FROM-ALI, circle label t.hat. may apply to the I ine segment.

The last I ine is the label that is assoc iated wi th the i ine

segment.. Again, if a field is not. speci fied for a given

Iine segment., the "$$NULl," string is inserted int.o t.he fi le

Finally , all . gph" files eon ta in a "0" on the last.

line of the file to signal that the last line has been

reco rded.

".dbs File Format

The purpose of this file is to store the data

dictionary information in a format capable of being read in

by t.he database management tool. The file consists of a

session header, a list of activity data dictionaries, and a

list. of data element, data dictionaries. Hach section is

separated by separated by a unique delimiter. Figure 22 is

an outline of the format for a ".dbs" file. The following

paragraphs describe the format for the session header and

the format. for st.oring a field for both types of' data

di't i onar i es.

Session Header Format. Figure 23 is an e'xample of a

Session Ileader, identifying each of the needed f'ields and

the order t.hey must, appear. Note that, the first line may

have two different. charact.er st.rings. If t.he diagram does

. riot. -ont ain suffic ient information For t.he dat.abase manager

All .

('-

* ,



SESSION FILE

#@4BEGIN00# or $$$$LOCAl,$$$$ /*Begin fiLet/

--- SESSION HEADER---

###ACTION TYPE### /*Begin activities list*/

(Z##START##@ /*Begin an activity*/

--- ACTIVITY DATA DICTIONARY---

.@##STOP## /*End of act.ivity*/
0

o /*More activities*/

0

###ACTION END### /*End of activities*/

###OBJECT TYPE### /*Begin data List*/
@##START##@ /*Begin a data item*/

--- DATA ELEMENT DATA DICTIONARY---

@##STOP##@ /*End of data item*/
0

o /*More data items$/
0

###OBJECT END### /*End of data items*/
#@@END@@# /*End of the file*/

Figure 22. Session File Outline

to st.ore and recall the data dictionary information,

"$$$$LOCAI,$$$$" is inserted to make the file inomp;iti'

with the database manager. If the diagram i.5 ,kjtl,

complete, the "#(@BEGINW@#" string is ir1-;,,t ,.,1

database manager wi I l accept the ti 1,.

Data Dictionary Field Format . r,

an act i vi ty element, data di , I , .

e I emen . dat. I i Ct. i ona r' r,

b: ... .. .

u n m n u - m u n mu u mm' ' --_ _



A-Rfift S1B A GRAPHICS EDITOR FOR STRUCTURED ANALYSIS WITH A DATA 2/2
DICTIONARY(U) AIR FORCE INST OF TECH SIGHT-PTTERSON
AUe IIFOH SCHOOL OF ENGINEERING S E JOHNSON DEC 87

I UNCLASSIFIED AFIT/GE/ENG/STD-28 F/G 12/5 UEE ° hEEEEE hiE
EhhhIhEEEEEIhE

EBhEEEIhEIhhhE
IEE..III



"3.:.2.2

,* , *4

i'-o. .-. j

M:CROCOPY RESOLUTION TEST CHAR-

'.

NP

4- • • • l • •



specified by seven lines in the file. Figure 24 is an

example of how one field is stored.

#@#HEADER BEGIN#@#
SESSION CONTAINS ALL NEW RECS /*SESSION ID*/
SADT /*TOOL ID */
SDI /*PROJECT NAME*/
REQ /*PHASE*/
BOTH /*TYPE OF DATA (also ACT or OBJ)*/
Wed Nov 19 04:16:56 1987 /*START TIME*/
Wed Nov 19 04:18:40 1987 /*STOP TIMEt/
Add Dot ACT /*ENTITY LIST*/

- Add Arrowhead ACT
/*Name Type */
/* ACT = ACTIVITY */

Add Squiggle ACT /* OBJ = DATA $/
User Inputs OBJ

User Outputs OBJ
#@#HEADER END#@#

Figure 23. Example Session Header

diname /*DATA NAME*/
25 /*FIELD LENGTH*/
N /*MULTI-LINE ?*/
1 /*NUMBER OF FIELDS*/

.** /*DIRECTION--N/A*/
MECH /*ICOM TYPE */
File Format /*FIELD CONTENTS*/

*Figure 24. Example Activity Field Element.

( -6

S



Each field of the data dictionary has a defined DATA

NAME according to the relational schema defined for these

data dictionaries. The database manager does not require

the field information to appear in any order, however, this

tool keeps the order the same as that for the "human-

readable" format of the data dictionary. The following are

the DATA NAME's saved in an activity element data

dictionary:

1. aname
2. number
3. description
4. diname
5. aliasname
6. comment
7. reference
8. reftype
9. version

10. date
11. author

The following are the DATA NAME's that are saved in a data

element data dictionary:

1. diname
2. description
3. datatype
4. low
5. hi6. span

Y. value
8. hidiname
9. lodiname

10. aliasname
11. comment
12. i.Iiereused
13. version
14. date
15. author

Vc

i

%- %"



Appendix D: Configuration Guide

The purpose of this appendix is to specify the

procedure for generating the executable file, "SAtool." The

executable file for this tool was generated by using the

-p

UNIX "make" facility. Using this method, changes to the

source files are tracked and recompiled as necessary before

linking the files together. If changes to the globals.h

files are made, the "make" facility does not know to

recompile the affected source files, it is the programmer's

responsibility. Figure 25 is a copy of the file called

"Makefile." To use this file, the command "make" is typed

at the system prompt, causing any needed compilations and

then linking of the files.

OBJECTS = main.o datadict.o messages.o
boxfunctions.o headerfunctions.o editboxfunc.o
miscfunctions.o addline.o figures.o endfuncs.o

find.o morelinefuncs.o linelabel.o moreddfuncs o
ddsearchfuncs.o savefuncs.o fptfuncs.o sqglefuncs.o
fnotefuncs.o moresave.o screendump.o readfuncs.o

sessi on.o

ITEADERS = globals.h

-ALL sad

('FLAGS = -O

IBS = -Isuntool -Isunwindow -Ipixrect -Im

sad $(OBJECTS)

cc $(CFLAGS) $(OBJECTS) $(1IBS) -o SAtool

* Figure 25. Makefi Iv Format

it.D -

0 ~ C * * * b . , ~ " . . . . . .. . . \ . .. *



U

Appendix E: Summar - Paper

Introduction

The requirements analysis phase of the software life

cycle is an important one. The Department of Electrical and

Computer Engineering at the Air Force Institute of

Technology (AFIT) has established an analysis methodology

for this phase of the software life cycle that consists of

using structured analysis (SA) diagrams and a data

dictionary. This paper describes the integration of these

two techniques into a computer automated tool for the

purpose of improving the software requirements analyst's

productivity.

An analyst's productivity can be improved because of

two significant reasons. First, several pieces of

information are needed for both an SA diagram and a data

dictionary. Separate, these two methods create a

significant duplication of effort to enter the information

twice. The integration of the two methods eliminates the

extra effort. Second, the analyst is freed from much of the

effort needed to create the diagram by hand (e.g. drawing

straight lines). This freedom is received by using a tool

tailored for this specific purpose.

5'.q

[---1

%.
5' - - ' . , 5,- % % ' ,% 

,
5 

-
' . , - , , " ", , "- ."- ," -- " "- 5 "- ", S "-" , " - ," ,



Backg round

Integrating two approaches into one tool divides the

tool into two natural components: the SA diagrams and the

data dictionaries. This section describes each of the

components.

SA Diagrams. The SA diagrams use a graphical language

that is derived from the Structural Analysis Design

Technique (SADT) (SADT is a trademark of SofTech, Inc.), and

are accompanied by facing page text to assist in the

understanding of the diagram. Rectangular boxes and arrows

are the primary graphical constructs used in an SADT

diagram. The boxes represent the decomposition of the parts

of the system being analyzed. The arrows are used to

describe how the boxes interface between each other on the

diagram. The graphical language consists of English text to

label the diagram and 40 graphical constructs to describe

relationships (SofTech Inc., 1976:4-4).

SofTech proposed that. the SADT methodology could be

applied to many types of problems in addition to software

requirements analysis (Ross, 1977:17). The U.S. Air Force

Program for Integrated Computer Aided Manufacturing (ICAM)

adopted a version of SADT from SofTech and called it ICAM

e),finition Method Zero or IDEF 0 . Now the Air Florce uses

this similar structured methodology to improve the

communication of people who use computers to improve

0 manufacturing productivity.

'."

*I• s*- p -e- &



Data Dictionaries. The purpose of a data dictionary is

to manage and document. data. According to Lefkovit.s

(Lefkovits, 1977), using data dictionaries provide many

benefits including: reduction of administrative effort.,

reduction of data redundancy, and reduction of system

development costs. Regarding software requirements

analysis, leong-Ilong and Plagman suggested that. dat.a

dict ionarie-s are an excellent vehicle for maintaining

documentation. Furthermore, they recommended that the data

dictionary system for producing documentation be automated

to reduce the monotony of the task. (Leong Hong and Plagman,

1982:"50 ).

Requirements Definition

Requirements for this tooL were based on previous

research at AFIT. A data dictionary editor existed that.

allows the user t.o t.ype and save the information on a

workstation and independently store the information in a

relational database. Research accomplished in parallel with

the tool development developed a data manager to save and

recall information in the database. That. effort specified a

st andard file format. for accessing data dictionary

informat, ion gene'rated by the tool.

A prot.otype tool to integrate SA diagrams and dat-a

dictionarie's was built at AFIT in 1986. This prototype

implemented a small subset. of the ent ire SA language syntax

used by SADT and IDEF 0 . To e xt.end this pro(o) tcype vfftort, it

t0



was necessary to examine the SADT and IDFF 0 graphic syntaxes

and identify a necessary and sufficient. language for

implementation of this tool.

*'. "The prototype as well as this tool were required to

careful ly consider the human/computer interface aspect, of

"-# the too l because of the interactive nature of the program.

Spec ifi(cal ly, the fol lowing rules for developing

human/computer interfaces were considered in it.s design:

1. Keep the user motivated.

2. Break t.he input process int.o parts t1 hi(,v,
* -. "psychological closure.

" '"3. Provide positive feedba('k t) thc jser.

4. Minimize memoriza t io n requi r,', hy Ihe us- r.

5. Provid(, a vi !u; I ly ile ,;ing display on '.h(

)6. 'Ii n iini ze t he r(-,)epons.ev t. ine ov t. h t.l

F i g ure I. lluman/Ccmput.er lnt.orf-ta-e R(equirements
* Soure:' (Urs'helr, 1986:21).

4

-i n.l I , par. ' th, tool's function was to provide

FiarL ',,\,ou Ituts Jf the various products maintained by the

,()I Therefore, it. was required that the tool implement a

ir anis I.o produce the SA diagram, the accompanying f'acini4

page text., and the data dictionaries generated by the Lool.

A j

0x-



bg

Description of the Tool

Hardware Decisions. SUN workstations were chosen

because they met several hardware requirements. Six SUN

workstations were available, each having a mouse input

device for manipulating the graphical constructs of the SA

diagram. Each SUN has a large display monitor to

accommodate an uncluttered user interface. Finally, all the

SUN workstations are tied to the AFIT computer network,

important for the transporting of data dictionary

information.

Software Decisions. Based on the availability of the

SunView package and the desire to use certain software

modules from the prototype again, it was decided to proceed

with the SunView package. Also, the tool was implemented in

C because SunView supports this language.

Human/Computer Interface. The design of an acceptable

human/computer interface was of primary importance in this

Ueffort.

The screen layout consisted of five areas or windows as

shown in Figure 2: the Input Window, the Message Window,

the Selection Window, the Diagram Window, and the Data

Dictionary Window. The Input Window is where the user

enters all text labels for the SA diagram. In the Message

Window, the user receives instructions, feedback, and help

messages. The Selection Window provides a mechanism for

choosing one of four menus of actions needed to bui Id an SA

% K %



diagram and data dictionaries. The Diagram Window shows the

current SA diagram and the Data Dictionary Window is where

data dictionary information not derived from the diagram is

entered by the user.

E SSAGE WE8ER

Figure 2. SAtool Screen Layout

E-6

.4I p

%p. %.pp'* , ' pP ~p*



A menu system was selected because it solved several

rules for a good user interface. The menu selections a'e

grouped according to the major function they provide:

editing a diagram, editing a data dictionary, displaying

facing page text, saving the diagram, or executing syst.em

functions (e.g. changing the working directory). Within

each grouping, the menu select ions are structured in a

hierarchical manner that matches the functional

dc omposition of the tool.

Data Files. The tool is capable of producing five data

files, two that save raw data (graphics and data dictionary

information) and three that save output products of' the

tool. Each file has a unique file extension.

The first two files save the raw data when the "save"

menu option is selected. The first one contains graphics

' information and is labeled with a " .gph" extension. "rhf

q second contains the data dictionary information in a format

readable by the database's data management, system. l'h i

file, is labeled with a .dbs" extension.
-U

The remaining three f i I es are generated at, t he ()I i on

(f tht user. Th( fac ing page Le xt. for a diagram is stoire(i

in an ASCII file with t ". fpt" ext.ens ion. The data

dieti onaries associated wit.h a diagr-im may he saved in a

" i Ie with " .Ad" xtension appended to the I i lI name.

• %*

'U

-" %,



...."N ,'.. ~ TV:~rW s . WT W R- 4 qWW sr .. .X .I%;-

These can be printed on any standard line printer. Final ly,

a copy of the diagram on the screen may be saved in a file

with a ".dmp" extension which is in a SUN rasterfile format

and must bc printed by a printer that. supports this format.

Eval uat. ion

After designing and implementing the toot, it was made

a;vai lable to two graduate level software engineering classes

for use and evaluation. Thirty-three students were assigned

to make one diagram using the tool and to complete a

quantitative evaluation of the tool based on that,

experience. On a scale from -1.00 (maximally dissatisfied)

t+1.00 (maximally satisfied), the user scores averaged

0.295. The scores ranged from -0.182 to .682 with a

standard deviation from the mean of 0.294. On the average,

thu evaluators used the tool about 138 minutes before

"- Ivmpleting the evaluation.

Cone I us i ons

The purpose of this thesis was to integrate the

structured analysis and data dictionary documentation

m*.thodologies ir to a computer automated tool to improve the

r,,quirements analyst's productivity. The progress of this

.- f.fort. was highl ighted by the following mi leston(s:

S%%

,e :;,e le
Ord- N%



1. Analysis previous efforts incLuding the
reusability of software from the prototype.

2. Identification of the necessary and sufficient.
graphic syntax implemented by the tool.

3. Successful design and implementation of
tool's software.

4. Evaluation of t.he tool's usefulness using
questionnaires and statistical methods.

l-

I%%

*IV



Appendix F: Requirement Analysis Diagrams

. The following pages contain the SA diagrams for the

requirements analysis done for this tool.

06p P

h%

'A,

,

uA,

t%%

.%Im LiA o

J.-%

i'A

. "S

,S w , , ,' / .¢ . . , ", ' - ' .. 'l.', ",, ,,, . W,, ,I . .t. N . ,. ."'' ,"%" " '".' ", ' ",.k,,S,. ' . ''," ," "." . -. . ,,'..' ''..' -.
-



A-0 Provide Requirement AnalyassCDTo

Abstract: Provide Requirement Analysis CAD Tool provides the user a mechanism
by which~ he isa ble to draw activity SA diagrams. From these diagrams. facing9 page text and Dot* Dictionaries for Activities and Data are generated.

AUTHOR: cap% Steve J~ohnson ODATE:10/1/87 IREADER

PROJECT: SA Tool IREV:l.0 JDATE

DD Defini~tions

NODE: TITLE; Provide SA Tool NIERC-

F-2

% -,* %. % - * * 4.-- . ';. * - - :- >f 2 > -4 4
. . , J - * * ...



AO Provide Requirement Analysis CAD Tool

Abstract : Provide Requirement- Analysis CAD Tool provides the user a Mechanism
by "hich he is abletto draw activity SA diagrams and generate DateI, DIctnaz'.. Ao AcIvities and Dat.

Al Create SA Diagram. gathers the user Input& and convert* them into

graphic&; information representing the diagram. Throughout the process. the
user is informed of progress through update& on the CR7 &croon. The user say
&-so use an ox~stinq file of user input& to generate a diagram. Date atructujrem
are created from which inputs to the data dictionaries soy be gathered.

A2 Create DC taem the graphics! Information pertinent to the date
4'. dictionary (activitv or data) a-Ong with user inputs to create the appropriate

date dictionary accorcing to the AF:7 Oats dictionary format. The status of the
process is maintained on the CRT.

A3 Create Facing Page Text combine& the description field of the date
aictionara for activities with the changes desired by the jeor to produce a
facing Pago e :xt. The statLus oi the process Is maintained on the CRT.

AUTHOR! Capt Stave .ohnson IDATEiS8/1/87 'READER

PROJ)ECT: SA Tool IRV 1.8 JDATE

Use DO Ieput eate SA Diagram

'2DE SALE -CRTid Info Tol03BR
UseB0

4'71

00Foma

Crae-R3If

00O eiiin

~~~~j>~~ ~ ~ ~ P Format~'?.. ' ' ~ ~ . a


%J
Al Create SA Diagram*

Abatract: Create SADT Diagrams gathers the user inputs end convert* them into
graphical Lnform tLon representing the diagram. Throughout the process, the
user Is LnformOd of progrea through updates on the CRT screen. The user may

e1o o en existing fIle of usez inputs to generate a diagram. Dote st-ructure
ore, created from which input& to the date dictionaries soy be gathered.

All Provide User Choice& taes the user's requests and determines the

appropriate action to take. This process continues until the user explicitly

req-uests to quit.

A21 Add to Diagram takes the jsers' request of graphics! entities to add to
the diagram and updates the current diegram. The upa~te 15 made available for

dtat dict~zn.ry updates. Also. the user is xept *breast of progress through the

Us o f diagram upietes or the acreer. error message&. anC Fi-ompta.

A13 Edit E sting Diagram takes the user's request to change the current

='1diagram and carries out the finction according to the AF:7 SA syntax. The
change is made availabe for date dictionary updates. Also. the usaer is kept
abreast of the progres by updetng the diagram on the scree, error massages.
and prompts.

N A14 Provide Input/Output takes the user'a requests to reed and save file&

-a nd perform& the appropriate operetion. In the case of a reed. the activity

attempts to loac an existing f~ie. The user monitors the statie of the
operation tnrnugh screen 4pdates, error maessags. and prompts.

A UTHOR: Caot Steve Johnson DATEte/1/87 READER

-PROJEC7: SA Too] JREV' 1.0 JDATE

User Interfac Syntax

User Irnputs Provide Qi
User _ Quit

SCho IsI"-"

all

Selecti0n/f Inisned UScrean updts-errs- r~Ost
Add Optn/flnlsne Iropr tserror massagesEd0t Optton/o nnfishhd

SNODE. TILE; Create SA Diagrams NI.ER C-3

AAd

4U. F-4

I'

t o D I n p t s 0

a.

A"2 Add to Diagram

Abstract: Add to Diagram takes the user's request of graphical entitlse to add

to the diagram and updates the current diagram. The update Ls maode available

for d to dictionary updates. Also, the user io kept abreast of progress through

the use of diagram updates on the &crewn, error mesage&, end prompt&.

A12: Add bx taxes the user command& end locates a now box along with the

appropriate label& on the existing SA diagram. The update is &ade avoIabD.

for data dict O nary generaton. The user controls end monitors the diagram

a" through the use of updates to the CRT.

A:22 Add Line taoe the user commaends and locates a new line and associated

!&be.& on the xioa;.ng SA diagram. The update 1 made eveilble for date

aictionery generation. The easr =Qntro~a and monitors the diagram through the

u;se of updates to tme CRT.

A::! Add Minor Coratr,..=ts takes the user commends and adds the minor
construct of choice to the current SA diagram. The user controls end monitors

the disgrem througn the use of the updetes to the CRT.

A_
_
4 Ada Header Info toes the user comands and inputs end !*a!&l the

-- diagram hederm. The information Is made avaa;eo for creating data dictionary

ontri. The user controls and monitors the d~egrea status through the use of

"' updates to the CRT.

AUTHOR Cant Steve johnson 'DATE 18/1,/87 READER |

RO2ECT IA Too] REV 0 DATE
Add Opt ion

SA SyntxC

sr nuts O Inuts
i~r.hus Box CRT Info 01

"- i t. - Line Syntax

l~~r ~,no Oat,On Ln•d CTmf]

4Adnor CRT Info

onstrctOp Constrio ru nstruc

NT At rdd

Headera
er

..-- 5

Inf

F-5

a P¢' kII'+I~k : aI-I~, ldI IJ +I IW i : a - * ... I*..... - a ' ..

A123 Add Minor Constructs

Abstracts: Add Minor Conetructs takes the user commands end adds the minor

construct of choice to the current SA diagram. The user controls and monitor&
the diagram through the use @ fthe updates to the CRT.

A123" Add Arrowhead tekes the user's commands end locates en arrowhead.

oriented properly, on the diagram. The user eccomp lshes this through CRT

updetes ilke prompts, error message* end diagram updetes.

A123: Add Dot takes the jeer's comaand* end locates a dot on the diagram. The

user eccomplishes this througn CRT updates like prompts, error aeasegea and

diagram updates.

Al.3 Add uhfle; takes the "&or's command and locates a tjinne. symbol. or~entec
proper y. on the diagam. The user eccomplishes this through CRT updates like

prompts. errr massages and diagram update.

A1234 Add Squ;gge takes the user's command and locates a squiggle on the

degrem. The user 4comp.isz 06 this through CRT update* like prompts, error

aesteoes and d;aarem updates.

A123S Add Branch takes the user's commend and locatae a branch (rounded corner)
- at th- location end on the line Specified by the 4ser. The user eccoepliehee

this through CRT updates ilk* prompts, error messagee end diagram updates.

A ?123 Add Join takes the user's c:asends and Join& a line to another line
a pecf;Aed by the josr. The user accomplehes this through CRT updates like

* prompt&. error message& and d;ugram updeae.

.UTHOR Caot Steve Johnson DATE: 1-7-87 REAOER

PRO2ECT SA Too I REV: . DATE

mIcr C2 Mpapts-updts-err muSgs

dot gt~of ~5prompts-updts-orr nisgsdot optlon!l dot syntax

Acid p rots-updts-orr msgs

3er outs Dot arrohead syntax
" " 2; ;, -,arrwnso optinta

Add Apromots-uodts-err mugs

Add prouts-uodts-err mugs

r qrt ue option

NODE~~Ad TITLE-pds-r Ad iorCntucsNgjE -

Sqigl I" ran ch .synta

I

NO0 ~ ~ ~ ~ ~ ~ d TILrd Io .Olr~Sc-

.4

Branch...-,

join* syta Add ~ ~ 5 '
Join.

76-- PU7 '.--------P

a1

- A13 Edit Existing Diagram

Abstract: Edit Existing Diagram takes the user's request to change the current
diagram and carries out the function according to the AFZT SADT syntax. The

change ia bade availebleo Lo data dictionary updates. Also. the user i kopt
abreast of the progrese by upd tAng the diagram on the screen,. error seamage.

end prompts.

A131 Edit bn taxe the uaeTr' requests and commands perfo rs the operatione of
moving the box, deleting the box. or re-labeling the box. The Changes are made

available for updating the current dot dictionaries. The user accomplishes

this through CRT updates like prompt&, error measages end diagram updates.

A:32 Edit Line taxes the users req ata Ono ofmstenda and perform& the

-o.rmtins of changing the line soel. 5ovifn9 the line. addinlg a branch, adding
a point to the line. delet;ng a point on the line, and deleting the line. The
c~narges are mede available for updating the current data dictionaries. The user
ac:raplehao this through CRT updatea like prompts, error messages and diagram

updates.

A:33 Dleete Minor Contructa take the user's re;,eoto and commands end

dee.ta the Specified construct. The user ocCaplaehee this through CRT updates
1;e prz)opts, error sosaages and diagram 6pdate&.

A134 Edit Header :nfo toes the user's requests and Commands and changes the
spoc:fod header'). "ha aterod information is made available for updating the
appli~mola data dictionaries. hear cmlesthis t rO-gh CR- updates
lie proopts, error &esages and diagr m update&.

AUTHOR Caot Steve Jonnson IDA E:10//87 READER II
PROjECT SA Tool REV" 1/8 ATE I

Box SyntaxL n

- ox CRT Info

SMnor COnstrLt Syntax

Z ud~tms-sorr xss-grotm

updatoa-orr mags-pr Dots

." NODE TITLE Edit Existing Diagrm NIBER C-

" A13 1

F-'7"

IInfo

A14 Provide Input/Output

Abetrct." ProvIdo Input/Output take& the user's requests to reed and save filma
and perfor o the appropriate opetion. Zn t.h came of a reed, the activity
ttempta to load an exieting file. The uer monlitors the Status of the
operation through screen update., error mesgee&. end prompt.

A141 lead Stored Anelysi attempts to read the file name specified by the
user. The user monitors the e&cceao or faei rT of the operation with screen
updates, error messege&, end prompt..

A142 Save Current Analysis attempts to Sve the existing analyi with the
file name specifled by the user. The file coneet of the data to generate the
current. SADT diagram.

V..

AUTmOR Capt Steve Johnson DATE 19/1/97 IREADER

PRO2EC7 SA 'ooI REV 1 8 JDATE
'V,

Read
"5er F, I@o$ed orcOots-9rror messages

Anll y$S I SJ

Valid File Name

Save *ItarOv C5tC
.,a ae' Current

NODE iTITLE Provide input/Output NUMBER 2-'
A14

...

F-8
k%

.o V
V."..

-. -. -V .

A2 Create D

Abstract: Create DD takea the graphical information pertinent to the dots
dictionary (activity or data) along with user inputs to create the appropriate
dtea dictionary according to te AF:T date dictionary format. The status of the
proea to *ieJ r.ained on the CRT.

A2: Se~ect Entity specifies according to the usar input the type of d te

dictionary to be created.

A22 Gather :nputs gets the description and inputs from
the graphic pictQre to ererots a draft data dictionari according to the AFIT
form:t. mTha per controm ond monitor* the status of the operation via prompts
eno scr r 'oo 4 p oe

A23 Edit DD get& the current draft data dictionary and permits the user to
edit It. The altered data dictionary If the final copy for which the user is
given the option to save. The usar controls and monitors the statue of the
operatlon via prompts, error messages. end &cren •pdatea.

A24 Save DO recAives the altered data dictionary entry and gives the user
the option to &eve it as a &erate file. The description portion of the data

dictionary is made available for the generation of the facing page text. The
ser controas one monitors the stats& Of the operation via prompts, error

seessoes anc screer updates.

% AUTHOR Capt Steve Johnson DATE 18-7-87 RER EG
PROJECT SA Tool REV I 0 DATE I

00 Formatv.

Entit'y

%*.I [ntity

...- 0 routInput.

'ODE ~ ~ ~ Orft0 ':L 1at 0NISR

t..

'. O . ..

"to I t

SOevcr'ot 'on -

• jeer :MOurs
.°..DO Inputs Irw VagraA

Mprnmots-uodatee

NODE 7:'LE Cr0ete 00 NUMBER 9

%"

%%
% %"

A3 Creste recing Page Text

Abstract: Create Tacing Pago Text Combine& the description field of the data
dictionaris fo activitiso with the changes desired by the usair to produce a
facing page text. The &tatue of the process is maintained on the CRT.

A31 Getrer Descriptions collects the descriptions of the Activity boxes
Jeacribd on the SADT and produced a draft facing page text according to the
AFT format. The user control& and monitors the status of the opeoration with
the ue of screen update& error Peasao~a, and prompt&.

A32 Edit Draft tak a the draft facing pegs text end allows the user to odit
it for fine- copy. The user control& and monitors the status of the operatior
with the use of creoen update&, error mesagee. and prompt&.

A3 Sere FPT taxes the fine; copy of the facing page teut and permita the
user to save a copy of it to a separate file. if he so desire&. The user inputs
the lfi.~ansmoe N desire& to store the file under. This activity produes the
facing page text for the diagram according to AFIT format. The user contro:

.4..and monitors the status with the %,se of &creen updates. error oessages. and
prompt&.

AUTHOR: Capt Stave Johnson G(ATE 1@-7-87 jREADER I

PROJECT SA Tool IREV 18 0 DATE

FPT FaneatIC1

Descripti ns Gather
[lU~ InutS

D e
s
c r

i
p t

i
o

ijser rpt

'Draft FPT

.Draft Ccreen jodts-errs-prompt$ CRT :n#o

Save

6F a M F Fc7,

Stcreen adts-er-s-Ormpts

-Val, a' !em iea

MODE TITLE Create Facing Page Text INUMBER C -

b

F- 10

S

Append i x G: Structure Charts

NThe fol lowing pages contain the structure oharts , For

the major modules used in this tool.

-%S

5-0

of . * v .1

Lai

6w

tAi

G-2

..1

~% %

0 O

'2 wl
-°a

• p.'

i0

€ ..

o. - -q

aa

G,-2

fci I,

I'-n

4c La
00

00

C~

G-3

% %4

a-a

"IA

qq

C

-, 04

-. G-4

%

Fll

4j4

4J4*c
0

G-5-

!4. 5 a

z

4c4

-0

U2
4

J

to -C

C. CV

41C ..-

G-6'-

% N %J

czz

Qj

-~M

G-7

IMP

JN L

b4

Kj -

LLU

Lz

G-8

-- - - P W 7

OOLw

NCl
-~ -j

1..L -

CY

0 -0

G-

z

41-aa

- - 0.g9 -0

0

n 0

41 0~

-oo w0

G-10

%_ _

6;

.4

I

"a
-~ U

-4 2
z

-a

i
w..

-~ 4.)

o 44

-~ 44
o
-, -~ C,

4.' -' 6.
A 0

0
~1 41

~u rj~ -~

II ______________________

a

0-11

0

~ ~ & ~

z

LU

C'-3

C,4

IF a_
01

c

41

0 c0

G-12

S1p P -J o

p'jo

p 6p

G-1

%N 0

-~s-wp- -. p -.p -- w - -

aN

pp

4cU

~4~CL.

2z

oT;
J>

0
0

C.)

a-4 CC

CG 1

% A ,

Kcc

4.LA.

INNJ

I"-E

CZ4

0
0

G-15-

U --5%

C.-.1

,.- 0

10

PC V,

Go1

Lu

J..J

i z.

AA

m

G-17

% % %-%

-- - .- * 4.- -- -

hi

0

I

z

-4
- .6

N

C

I -
C

0
0 *

-' - C)

IbJ..
~L.

~L&J

U,

0
o L

w

*1 - -
~ 0

NO

N

w
1-0 0

0z

A

a.
4.

4'.

;4

G- 18

I

~ s~**** .~* *t~ phM~d~ ~ 4. '.\~'j. 4 ;. *-'.Iv\~\~ x.:..j.t'.
4 ~

- .'-*.

Bibl iography

AFIT/S I. "An Introduction to AFIT Educational Computer
Services." Student Handout. 22 Apri 1 1987.

Bailey, R. W. Human Performance Engineering: A Guide for
System Designers. Englewood Cliffs, NJ:
Prentice-lal I , Inc., 1982.

(Connally, Dwaine Common Database Interface for
Heterogeneous Software Engineering Tools. MS Thesis,
School of Engineering, Air Force Institute of
Technology (AIJ), Wright-Patterson AFB, Ot, December
1987.

Foley, James D. and Andries Van Dam. Fundamentals of
Interactive Computer Graphics. Reading, MA:
Addison-Wesley Publishing Company, 1982.

Foley, Jeffrey W. Design of a Data Dictionary Editor in
a Distributed Software Development Environment. MS
Thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, Ofl, June 1986.

Hansen, Wilfred J. "User Engineering Principles for
Interactive Systems," Interactive Prpgramming
Environments, edited by David R. Barstow and others.
New York: McGraw-Hil1 Book Company, 1984.

liartrum, Thomas C. Soft._ware DevelopmentDocumentation

Guidelines and Standards (Draft_# 3 a). Air Force
Institute of Technology Department of Engineering,
Wright-Patterson AFB, OH, (September 26, 1986).

l,efkovits, Henry C. Data Dictionary Systems. Wellesley, MA:
Q.E.D. Information Sciences, 1977.

Leong-Hlong, Belkis W. and Bernard K. Plagman. Data
Dictionary/Di rectory Systems, Administration,
Implementation and Usage. New York: John Wiley & Sons,
1982.

M Ia lary, T. C. Design of the Iluman-Computer Interface for a
Computer Aided Design Tool for the Normalization of'
Re lat ions MS Thesis, School of Engineering, Air For(ce
Inst. i tute of Techno logy (AIJ) , Wright-Patterson AFBH, ()Il,
December 1985.

%-%

%6'. % %.-- %
o -r

Materials Laboratory, Air Force Aeronautical Laboratories.
Integrated Compul.er-Aided Manufacturing (ICAM) Function
Modeling Manual (IDEFo) . Wright-Patterson AFI: USAF,
June 198 .

Newman, William M. and Robert F. SprouHl. Principles of'
Interactive Computer Graphics. New York: McGraw-Ili I I
Book Company, 1979.

Price, Lynne A. "Studying the Mouse for CAD Systems,"
Proceedings, ACM IEEE 21st Design Automat. ion Conference,
21: 288-293 (June 1984).

Pressman, Roger S. Software Engineering: A Practioner's
Approach. New York: McGraw-Hill Book company, 1982.

Ross, Douglas T. "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Transactions on Software
Engineering, SE-3, NO.1: 16-34 (January 1977).

Softech Inc. An Introduction to SAI)T Structured
Analysis and Design Technique. Softech Report. 9022-78R.
Waitham, MA, 1976.

Smith, D)aniel G. AUTOIDEFo: A New Tool for Function
Modeling. Technical Publication. The Software
Technology Company, Waltham, Mass., September 1981.

Thomas, Charles W. An Automated/Interactive Software
Engineering Tool to Generate Data Dictionaries. MS
Thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, June 1986.

Urs,'heler James W. Design of a Requirement Analysis Design
Tool Integrated with a Data Dictioihary in a Distributed
Sof't.ware Development Environment. MS Thesis, School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, 011, June 1986.

Woffinden, Duard S. Interactive Environment for a Computer-
Aided Design System. MS Thesis, Naval Postgraduate

School, Monterey, CA, 1984.

,-%

I.

'V
;11

* ***~ .- - ~ ~ .~ .. ~~ r r r- rr r-. - r C CJ1 - C C F F CF r. r r w- F

VITA

Captain Steven E. Johnson was born 26 June 1959 in

Pierre, South Dakota. He graduated from T. F. Higgs "igh

School in Pierre in May 1977. In December 1981, he received

a Bachelor of Science in Electrical Engineering from South

)akota State University and was commissioned in the USAF,'

through the R1OTC program. In February 1982, he began

active duty wit.h the 44th Strategic Missile Wing at

l IlIswor t.h AFB, South Dakota, serving as Chief of the

Technical Engineering Branch. In May 1986, he entered the

School of Engineering, Air Force Institute of Technology.

Permanent address: 114 S. Filmore

Pierre, SI) 57501

'a

i I V.

Ile

I '... '

SECURITY CLASSFCA'ION Or T -fS PAGE

REPORT DOCUMENTATION PAGE OAf8 c 74 88
l~a REPORT SECjR TY C..ASSiFCATION I10 RESTRiCTVE NARK %GS

Unclassified ______________________

~2a. SECURITY CL.ASSIFICATION AUTHORITY 3 D!STRiBjTiON 'AVA..A8'. 'Y 0- PE__ 0R

o v- roe Cf :o icr
..t2o DECLASS;IiCATiON. DOWNGRADING SCH-EDULE is tr _-oi i on a r. iie c

j,4 PERFORMING ORGANiZAT)ON REPORT N UJMBER S S MON TORING ORGAN ZAT ON R OP NN' S

,6a NAME OF PERFORMING ORGANIZATION 5D6 OFFICE SYMBOL. 7a NAME 0O: MONiTORiNG ORG3AN ZA_ ON

School of zrngineerin.,J (If applicable)

6ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State and ZIP Coale)fAir Force institute of Tecnnolozgy
Alrint-i-atterson AFID, On~

8a. NAMVE OF FUNDING 'SPONSORING j8t) OFFICE SYMBOL 9 PROCUREMENT INSTRj.MEN- DEN7 CAiON N.MBERj ORGANIZATION (if applicable)

)3 /Zij13sB _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _

,8.ADDRESS (City, State, and ZIP Code) '0 SOURCE OF FUNDING NUMBERS

Fentazon PROGRAM PROJECT TASK 'NORK UNIT
asi -oELEMENT NO NO NO ACCESSION NOI .;asingon,:;20301-7100

1 ITE (include Security Classification)

IA &R~SzLIiTOR FORk STRJ% TUH.,1J AiiALYSIS v4ITH- A iLA'.A Dl0TIJ.-,A. .

112 PERSONA AUTHOR(S)
I Steven J ohnson, ;aiDtain USAF

.13a. TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 5' PAGE COUNT
* V S Thes is IFROM ____TO__ D 92 ec 14

p16. SUPPLEMENTARY NOTATION

* 17 COSATi CODES 18. SUBJECT TERMS (Continue on reverse if net stry anid identify by &*ac n4m0,_..,,
FIELD GROUP SUB-GROUP Interactive Graphics, So ,tare En-ineering-

Computer Aided Design, Data D)ictionary

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)
A computer tool was designed and implemented tnat integrated two

* approaches for documentinE software requirements analysis, structured
* analysis (SA) dia-rams and data dictionaries. The tool provides the
provides the requirements analyst with an environment for creatinE theSA dia -crams and entering parts of tiho data dictionary. The tool aerives
the remaining data dictionary information from the diagram.I bacKground informnation is provided on existing structured analysis

* techniques, data dictionary uses, and on human computer interface design
issues.

A --raphic S A syntax was derived from existing SA techniques and tne
data dictionary formats were specified by previous work at AFIT.
R ~eq uirements for the hum:ran comncuter interface as well as the 'unctional

*.aspnects of the tool are discussed. A summary of the design decisions madeI are also presented.
.,20 DISTRIBUTION AVAILABILITY OP ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

.C-EJUNCLASSIF!ED!UNLIMI TED XXSAME AS RPT DTIC USERS J nc lass if ied
I2aNAME OF RESPONSIBLE INDIVIDUAL ~22b TELEPHONE (include Area Code) 22c OcFiCESMO
JDr. Thomas C. artrum k1-55376PIT/EAC,'

O D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OP THIS PAGE

4. P **'* k %* *. Z*. .. .-

19. Abstract

The tool was used and evaluated by more than 35 graduate level
software engineering students. The students evaluated the tool using a
standard questionnaire developed at AFIT for this purpose. The responses
were compiled and analyzed using statistical methods and are also presented.

.,.

""4"

6o

J ~~~~~... .~

rloo
-.4

,I

, 0 I, Ile
.A...AWU 4 ,* .5..U

